Introduction of Perceptron in Python

Ko, Youngjoong

Dept. of Computer Engineering, Dong-A University
1. Basic Concepts
2. Bio-inspired Perceptron
3. Structure and Computation
4. Learning
5. Geometric Interpretation
6. Limitations of perceptron
7. Python Code and Practice
- "어떤 사과나무에 대해서 몇 년에 걸쳐 날짜 별로 사과들의 크기를 측정, 기록"
- 농부는 특정 크기가 넘을 때만 시장에 사과를 내다 팔 수 있다고 할 때,
- Q: 올해 Day-50에 사과를 내다 팔 수 있을까? 없을까?
Basic Concepts of Perceptron

- **Illustration Example (Apple Tree)**

 Default

 size = 5 size = 10 size = 15 size = 20 size = 25

 If size > 30, sell an apple!

 ![Illustration of an apple tree](image)

 Day 0 | Day 10 | Day 20 | Day 30 | Day 40 | Sell

 상황 1: 작년까지 이 사과나무는 위의 경향대로 사과 열매를 맛였다.
 조건: 사과의 크기가 30이 넘으면 팔 수 있다.

 Question: 예년에 사과를 팔 수 있음까?

 Very Typical Regression Problem
Basic Concepts of Perceptron

Illustration Example (Apple Tree)

If size > 30, sell an apple!

- Default size = 5
- size = 10
- size = 15
- size = 20
- size = 25

- Day 0
- Day 10
- Day 20
- Day 30
- Day 40

Regression

\[y = ax + b \]

Size = 0.5*day + 5

Activation point to sell an apple!

\[\rightarrow \text{learn the parameter 'a' and 'b' from the data} \]
Basic Concepts of Perceptron

- **Illustration Example (Apple Tree)**

\[
 y = ax + b
\]

\[
 If \ y > 30 \rightarrow sell \ an \ apple \]

\[
 Y = WX + b
\]

Activation function

- **Step Function**
Bio-inspired Learning

Our brains are made up of a bunch of little units, called neurons, that send electrical signals to one another.

- The rate of firing tells us how “activated” a neuron is.
- The incoming neurons are firing at different rates (i.e., have different activations).

The Goal is that we are going to think of our learning algorithm as a single neuron.
Bio-inspired Perceptron

- **Processing Unit**
 - Neuron vs. Node

- **Connection**
 - Synapse vs. Weight
Structure and Computation

- **Terminology for perceptron**
 - Layer, Node, Weight, Activation function and Learning

- **A simple example**
The neuron receives input from D-many other neurons
- One for each input feature
- The strength of these inputs are the feature values

Each incoming connection has a weight and the neuron simply sums up all the weighted inputs
- Based on this sum, it decides whether to “fire” or not
- Firing is interpreted as being a positive example and not Firing is a negative example
 - If the weighted sum is positive, it “fires” and otherwise it doesn’t fire
Structure of Perceptron

- Input layer: \((d+1)\) nodes (feature vector, \(\mathbf{x} = (x_1, \ldots, x_d)\))
- Output layer: 1 node (*binary* linear classifier)
The weights \((w = (w_0, ..., w_d))\) of these neurons are fairly easy to interpret.

- Suppose that a feature, for instance “is this a System’s class?” gets a zero weight
 - the activation is the same regardless of the value of this feature. So features with zero weight are ignored.

- Feature with positive weights are indicative of positive examples
 - Because they cause the activation to increase

- Feature with negative weights are indicative of negative examples
 - Because they cause the activation to decrease
Structure and Computation

- **Computation of Perceptron**
 - Input layer: *Just transfer*
 - Output layer: *summation and activation function*

\[
y = \tau(s) = \tau(\sum_{i=1}^{d} w_i x_i + b) = \tau(\mathbf{w}^T \mathbf{x} + b)
\]

\[
\phi(w) = \begin{cases}
+1, & s \geq 0 \\
-1, & s < 0
\end{cases}
\]

- Binary Linear Classifier

\[
d(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b > 0 \text{ 이면 } \mathbf{x} \in \omega_1 \\
d(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b < 0 \text{ 이면 } \mathbf{x} \in \omega_2
\]
Example of Perceptron Computation

- OR classification
- \(d(x) = x_1 + x_2 - 0.5\)
Perceptron Learning

- Training set: \(X = \{ (x_1, t_1), (x_2, t_2), \ldots, (x_N, t_N) \}, t_i = 1 \text{ or } -1 \)
- Try to look for \(w = (w_0, \ldots, w_d) \) and \(b \)

Ex) And Problem

\[
\begin{align*}
a &= (0,0)^T, \quad b &= (1,0)^T, \quad c &= (0,1)^T, \quad d &= (1,1)^T \\
t_a &= -1, \quad t_b = -1, \quad t_c = -1, \quad t_d = 1
\end{align*}
\]
Learning of Perceptron

- **General Designing Steps for Learning in Pattern Recognition**
 - Step 1: Building up Classification Model
 - Step 2: Cost function, $J(\theta)$
 - Step 3: Finding θ to optimize $J(\theta)$

- This problem is changed into an Optimization Problem!
Learning of Perceptron

- **Step 1**
 - Parameter Set: $\theta = \{w, b\}$

- **Step 2**
 - Cost Function: Y is a set of error training examples
 \[J(\Theta) = \sum_{x_k \in Y} (-t_k)(w^T x_k + b) \]

- **Step 3**
 - Gradient Descent Method
 - Move $-\frac{\partial J}{\partial \theta}$ direction
 - Learning Rate:
Learning of Perceptron

- Sketch of algorithm
 - Setting up Initial Parameters for $\theta = \{w, b\}$

\[
\Theta(h + 1) = \Theta(h) - \rho(h) \frac{\partial J(\Theta)}{\partial \Theta}
\]

\[
\frac{\partial J(\Theta)}{\partial w} = \sum_{x_k \in Y} (-t_k) x_k
\]

\[
\frac{\partial J(\Theta)}{\partial b} = \sum_{x_k \in Y} (-t_k)
\]

\[
w(h + 1) = w(h) + \rho(h) \sum_{x_k \in Y} t_k x_k
\]

\[
b(h + 1) = b(h) + \rho(h) \sum_{x_k \in Y} t_k
\]

또는

\[
\hat{w}(h + 1) = \hat{w}(h) + \rho(h) \sum_{x_k \in Y} t_k \hat{x}_k
\]
Learning of Perceptron

- **Perceptron Learning in Batch Mode**

입력: 훈련 집합 \(X = \{ (x_1, t_1), (x_2, t_2), \ldots, (x_N, t_N) \} \), 학습률 \(\rho \)

출력: 퍼셉트론 가중치 \(w, b \)

알고리즘:

1. \(w \)와 \(b \)를 초기화한다.
2. repeat {
 3. \(Y = \emptyset \);
 4. for \(i = 1 \) to \(N \) {
 5. \(y = \tau(w^T x_i + b) \); \hspace{1cm} // (4.2)로 분류를 수행함
 6. if \((y \neq t_i) \) \(Y = Y \cup x_i \); \hspace{1cm} // 오분류된 샘플 수집
 7. }
 8. \(w = w + \rho \sum_{x_k \in Y} t_k x_k \); \hspace{1cm} // (4.7)로 가중치 갱신
 9. \(b = b + \rho \sum_{x_k \in Y} t_k \)
 10. } until \((Y = \emptyset) \);
11. \(w \)와 \(b \)를 저장한다.
Learning of Perceptron

- Perceptron Learning in Pattern Mode

Algorithm 5 \texttt{PERCEPTRONTRAIN}(D, MaxIter)

1. \(w_d \leftarrow 0 \), for all \(d = 1 \ldots D \)
 \(b \leftarrow 0 \)
 // initialize weights
2. for iter = 1 \ldots MaxIter do
3. for all \((x,y) \in D \) do
4. \(a \leftarrow \sum_{d=1}^{D} w_d x_d + b \)
5. if \(ya \leq o \) then
6. \(w_d \leftarrow w_d + yx_d \), for all \(d = 1 \ldots D \)
7. \(b \leftarrow b + y \)
8. end if
9. end for
10. end for
11. return \(w_0, w_1, \ldots, w_D, b \)

Algorithm 6 \texttt{PERCEPTRONTEST}(w_0, w_1, \ldots, w_D, b, \hat{x})

1. \(a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b \)
 // compute activation for the test example
2. return \(\text{SIGN}(a) \)
Learning of Perceptron

- An Example

\[w(0) = (-0.5, 0.75)^T, \quad b(0) = 0.375 \]

\[d(x) = -0.5x_1 + 0.75x_2 + 0.375 \]
\[Y = \{a, b\} \]

\[w(1) = w(0) + 0.4(t_a \cdot a + t_b \cdot b) = \begin{pmatrix} -0.5 \\ 0.75 \end{pmatrix} + 0.4 \begin{pmatrix} -0 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.1 \\ 0.75 \end{pmatrix} \]
\[b(1) = b(0) + 0.4(t_a + t_b) = 0.375 + 0.4 \cdot 0 = 0.375 \]

\[d(x) = -0.1x_1 + 0.75x_2 + 0.375 \]
\[Y = \{a\} \]

\[w(2) = w(1) + 0.4(t_a \cdot a) = \begin{pmatrix} -0.1 \\ 0.75 \end{pmatrix} + 0.4 \begin{pmatrix} -0 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.1 \\ 0.75 \end{pmatrix} \]
\[b(2) = b(1) + 0.4(t_a) = 0.375 - 0.4 = -0.025 \]
Why this particular update achieves better job

- Some current set of parameters \(w, b \)
- An example \((x_i, t_i)\), suppose this is a positive example, so \(t_i = 1 \)
- Compute an activation \(a \), and make an error \(a < 0 \)
Geometric Interpretation

- **What does the decision boundary of a perceptron look like?**
 - The sign of the activation, \(a \), changes from -1 to +1
 - The set of points \(\mathbf{x} \) achieves zero activation
 - The points are not clearly positive nor negative

- **Consider the case where there is no “bias” term**
 - The decision boundary \(B \) is:
 \[
 B = \left\{ \mathbf{x} : \sum_{d} w_d x_d = 0 \right\}
 \]
 - If two vectors have a zero dot product, they are perpendicular
 - The decision boundary: the plane perpendicular to \(\mathbf{w} \)
The scale of the weight vector is irrelevant from the perspective of classification

- Work with normalized weight vector \mathbf{w}, $||\mathbf{w}|| = 1$

The value $\mathbf{w} \cdot \mathbf{x}$ is just the distance of \mathbf{x} from the origin when projected onto the vector \mathbf{w}

This distance along \mathbf{w} is exactly the activation of that example, with no bias
The role of the bias term

- Previously, the threshold would be at zero
- The bias simply moves this threshold
- Bias term b is added to get the overall activation
 - The projection plus b is then compared against zero

- From a geometric perspective, the role of the bias is to shift the decision boundary away from the origin, in the direction of w

- It is shifted exactly b units
 - b is positive, the boundary is shifted away from w
 - b is negative, the boundary is shifted toward w

- A positive bias means that more examples should be classified positive
 - By moving the decision boundary in the negative direction, more space yields a positive classification
The perceptron update can also be considered geometrically.

Here, we have a current guess as to the hyperplane, and positive example comes in that is currently mis-classified.

The weights are updated: $w = w + xt$

- The weight vector is changed enough so this training example is now correctly classified.
Limitations of Perceptron

- The limitation is that its decision boundaries can only be linear
 - XOR problem

- You might ask is: “Do XOR-like problems exist in the real world?”
 - The answer is “YES.”

- Two alternative approaches to taking key ideas from the perceptron and generating classifiers with non-linear decision boundaries
 - Neural Networks: combine multi-layer perceptrons in a single framework
 - Kernels: find computationally efficient ways of doing feature mapping in a computationally and statistically efficient way
Python Code and Practice

- You should install Python 2.7 and Numpy
- Download from: http://nlpmlir.blogspot.kr/2016/01/perceptron.html
- Homework
References

- 오일석. 패턴인식. 교보문고.

- http://ciml.info/
Thank you for your attention!

http://web.donga.ac.kr/yjko/

고 영 중