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Abstract 

 

In recent years, automatic text categorization has gained a prominent status in the 

information systems field, due to the widespread and continuously increasing 

availability of documents in digital form. Many machine learning algorithms have 

been applied to text categorization tasks. In the machine learning paradigm, a general 

inductive process automatically builds an automatic text classifier by learning, 

generally known as “supervised learning”. The supervised learning approach finds a 

representation or decision rules from an example set of labeled documents for each 

category.  

However, the supervised learning approach has some difficulties. One key difficulty 

is that it requires a large, often prohibitive, number of labeled training documents for 

accurate learning. Since labeling tasks must be done manually, this is a painfully time-

consuming process. In addition, since the application area of text categorization has 

diversified from newswire articles and web pages to E-mails and newsgroup postings, 

it is also a difficult task to create training data for each application area.  

In this thesis, we propose a new automatic text categorization method based on 

unsupervised or semi-unsupervised learning. Our proposed method uses only 

unlabeled documents and the title word of each category, and it automatically 

constructs machine-labeled training documents from them by a bootstrapping method. 

Then a text classifier learns with them and classifies text documents. Here, since our 

method exploits the machine-labeled documents as training data (they include many 

incorrectly labeled documents), we need a robust text classifier from noisy data. 

Therefore, we propose a new classifier, the TCFP classifier, which showed the best 



 ix 

performance in our experiments.  

The experiment results showed that our method achieved the significant 

performance in comparison with that of a supervised Naive Bayes classifier. In general, 

since unlabeled documents are much less expensive and easier to collect than labeled 

documents, our method is useful for text categorization tasks including online data 

sources such as web pages, E-mails and newsgroup postings. If one uses our method, 

building text categorization systems will be significantly faster and less expensive 

than by the supervised learning approach. 
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Chapter 1  

Introduction 

 

 

In recent years, automatic content-based document management tasks have gained a 

prominent status in the information systems field, due to the widespread and 

continuously increasing availability of documents in digital form. As a result, 

automatic text categorization (TC – also known as text classification, or topic 

spotting) has witnessed an increased and renewed interest. 

A generally accepted definition of text categorization is 

 

“Text Categorization is the task of deciding whether a piece of text belongs to 

any of a set of prescribed categories. It is a generic text processing task useful in 

indexing for later retrieval, as a stage in natural language processing systems, for 

content analysis, and in many other roles.” 

                                                              Lewis 

 

Namely, text categorization systems categorize documents into one (or several) of 

pre-defined topics of interest. More recently, there has been an explosion of electronic 

text from the World Wide Web, electronic mail, corporate databases, chat rooms, and 
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digital libraries. One way of organizing this overwhelming amount of data is to 

classify them into descriptive or topical taxonomies. By automatically creating and 

maintaining these taxonomies, we can aid people to search information and knowledge.  

Until the late ‘80s, the most effective approaches to text categorization were based 

on the manual construction of rule sets [1]. In this approach, a person must define a 

detailed set of rules for automatic classification. Highly accurate text classifiers are 

built with this approach, but it takes significant costs. Constructing a complete rule set 

requires a lot of domain knowledge and a large amount of human time to create and 

tune the rules correctly. Therefore, this is not useful approach for text categorization in 

many cases.  

In the ‘90s, a more efficient approach, the machine learning paradigm, emerged, 

and it definitely took the place of the rule based approach [1]. In the machine learning 

paradigm, a general inductive process automatically builds an automatic text classifier 

by “supervised learning”. The supervised learning approach finds a representation or 

decision rules from an example set of labeled documents for each category. This 

approach has shown high performance, and it is significantly less expensive than the 

rule based approach because it automatically composes the decision rules. A wide 

range of supervised learning algorithms has been applied to this area using a training 

data set of labeled documents. For examples, there are Naive Bayes [2][3], Rocchio 

[4], Nearest Neighbor (k-NN) [5], TCFP [6], and Support Vector Machines (SVMs) [7]. 

However, the supervised learning approach has some difficulties. One key difficulty 

is that it requires a large, often prohibitive, number of labeled training documents for 

accurate learning. Since labeling tasks must be done manually, it is a painfully time-

consuming process. In addition, since the application area of automatic text 

categorization has diversified from newswire articles and web pages to E-mails and 
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newsgroup postings, it is also a difficult task to create training data for each 

application area [8]. Lang (1995) found that after a person read and manually labeled 

about 1000 articles, a learned classifier achieved a precision of about 50% when 

making predictions for only the top 10% of documents about which it was most 

confident [9]. Most users of a practical system, however, would not do the labeling 

task for a thousand articles to obtain only this level of precision. They would 

obviously prefer algorithms that can have a high accuracy, but do not require a manual 

labeling task.  

In this thesis, we propose a new automatic text categorization method based on 

unsupervised or semi-unsupervised learning. Our proposed method uses only 

unlabeled documents and the title word of each category, and it automatically 

constructs labeled training data from them by a bootstrapping method. Then a text 

classifier learns with them and classifies text documents. Our method makes use of 

data which are automatically labeled by machine and which include many incorrectly 

labeled data for learning. Hence, we develop a new classifier, Text Categorization 

using Feature Projections (TCFP), with robustness from noisy data and fast execution 

speed. TCFP showed the best performance in our experiments. The results of our 

experiments showed that our method could produce a significant performance 

compared to the supervised Naive Bayes classifier. In general, since unlabeled 

documents are much less expensive and easier to collect than labeled documents, our 

method is useful for text categorization task including online data sources such as web 

pages, E-mails, and newsgroup postings. If one uses our method, building text 

categorization systems will be significantly faster and less expensive than by the 

supervised learning approach. 
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1.1 How Can an Automatic Text Classifier Be Built from 

Unlabeled Data? 

 

Do you think it is possible to build a text classifier with only unlabeled data? Perhaps 

one can think that we cannot gain any information from unlabeled data for building 

the text classifier, because they do not contain the most important information - their 

categories. In general, the existing supervised learning approaches cannot construct 

any decision rules without the labeled data. Thus, we need to label our collected 

documents in order to use the existing supervised learning approaches. First of all, you 

can think of clustering techniques. Many clustering techniques were applied in this 

area so far, but they have not achieved a useful accuracy and they contained several 

problems for using clustering results as training data.  

In this thesis, we explain how unlabeled data can be used as training data in text 

categorization. Above all, we look at the definition of text categorization again: “Text 

Categorization is the task of deciding whether a piece of text belongs to any of a set of 

prescribed categories.” In other words, text categorization is a task based on the 

prescribed categories. Hence, we must know the categories for classifying documents 

before starting a text categorization task. Knowing the categories means that we can at 

least choose the representative title word of each category. This is the starting point of 

our proposed method. We carry out a bootstrapping task from title words for creating 

labeled training data. For the bootstrapping task, we first estimate the degree of 

semantic similarity between the title word and the other words using co-occurrence 

information in the collected documents. Words with high semantic similarity are 

chosen as keywords of each category. We next use contextual information in order to 

extend the vocabulary size of each category using the title word and keywords of each 
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category. We define a context that contains a fixed number of words, and we extract 

the centroid-contexts that include the keywords or the title word within them. Using a 

similarity measure method and the centroid-contexts, we can group the contexts into 

clusters for prescribed categories, which consist of contextually similar occurrences. 

Each cluster is assumed to correspond to the training data of a category. Now we can 

do a learning task for text classifiers using these context-clusters as training data. 

Here, we give an intuitive example of how to extend the vocabulary of each 

category. Suppose that we are interested in classifying web pages specially about 

‘Autos’ category. Above all, we can select ‘automobile’ as a title word. Then we can 

choose words (‘car’, ‘gear’, ‘transmission’, ‘sedan’, and so on) as having the high 

semantic similarity to ‘automobile’ as keywords. We segment the collected documents 

into contexts and we extract all contexts using the title word or the keywords. We call 

these contexts the centroid-contexts. Through the centroid-contexts, we can gain many 

contextually co-occurred words: ‘driver’, ‘clutch’, ‘trunk’, and so on. They are words 

in first-order co-occurrence with the title word and the keywords. But we cannot get 

enough vocabulary for recognizing the ‘Autos’ category yet. We therefore extract 

contexts that are similar to centroid-contexts by a similarity measure method. These 

contexts contain words in second-order co-occurrence. Finally, we define the context-

cluster of a category as centroid-contexts of the category and contexts clustered by a 

similarity measure method. Now we can gain enough vocabulary from context-

clusters for learning a classifier. 

For our classification task, we select a generative model, a Naive Bayes classifier, 

and set the model’s parameter values for each category from the context-clusters [3]. 

After the training task, we classify and label the original collected documents. Finally, 

we can get a labeled data of a document unit. In order to use these as training data, we 
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develop a new text classifier, TCFP, with robustness from noisy data and fast 

execution speed and we learn it from the machine-labeled documents in a supervised 

learning manner. This method is similar to the statistical technique of Expectation-

Maximization (EM) [8][10][11]. Nigam however verified that EM can hurt accuracy 

when labeled data are sparse: the WebKB and Reuters data sets [12]. Thus, we do not 

apply EM algorithm to our method and use the machine-labeled data from our method 

as only training data for supervised-manner classifiers; they require labeled data of a 

document unit.  

Our hope is that the proposed method gives us the faster and less expensive 

classifier than a classifier by the supervised learning approach, and it has the 

comparable accuracy. 

 

Pre-defined category?

If so, I can know title 

words!

Bootstrpping!

Generative 

Model!

Robust classifier 

from noisy data! 

Automobile
Title Word

car, gear, transmission, sedan
Keywords

Generative Model
Learning

Context-Cluster

car, parking, gas station, …
Context

road, highway, driver, …
Context

...

TCFP Classifier
Learning

Machine-Labeled Data

Auto : gear, driver, clutch, …
Machine-Labeled document

...

 

Figure 1. 1 An example of the bootstrapping task in our method 
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1.2 Outline of This Thesis 

 

The outline of this thesis is as follows. Chapter 2 surveys the related work. It also 

relates different approaches to use unlabeled data for text categorization. We compare 

our proposed method with them in this chapter. 

Chapter 3 presents how to automatically build the basic training data from 

unlabeled documents using the title word of each category. It derives the bootstrapping 

method that creates the context-clusters from title words of categories. Here, we 

evaluate our method using the Newsgroups, WebKB, and Reuters data sets. We 

obtained a meaningful performance from our proposed method in these data sets. 

In Chapter 4, we learn the supervised-manner classifiers (Naive Bayes, Rocchio, k-

NN, SVMs, and TCFP) using data labeled by our method (the machine-labeled data) 

and classify documents again by these classifiers. Here, we present a new classifier, 

TCFP, which has robustness from noisy data and fast execution speed. Our method 

requires a robust classifier from noisy data because it exploits the machine-labeled 

data as training data; they generally contain many incorrectly labeled documents. 

TCFP showed good performance in respect with its accuracy and running time. 

Especially, TCFP showed better performance in the application area with a lot of noisy 

data like our method. Through this procedure, we obtained advanced performance. 

The final accuracy of our method is comparable with that of the supervised learning 

approach. 

Chapter 5 compares our method with a clustering method called the sIB algorithm. 

This clustering algorithm is applied to text classification with an unlabeled data set. 

We compare the performance of our method with that of sIB. As a result, we achieved 
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better accuracy than the clustering method, sIB.  

Chapter 6 presents a new keyword extraction method to overcome a problem of our 

system, that its performance depends on the input title words and keywords. Then we 

observe the effect of learning from small training data through three data sets. 

In Chapter 7, we discuss the conclusions of this dissertation. We also describe 

several future researches about more efficient methods for learning from unlabeled 

data.  
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Chapter 2  

Related Work 

 

 

Text categorization is an abundant research field with existing and ongoing scientific 

research. Related approaches for using unlabeled data in text categorization generally 

have two directions; One learns classifiers from a combination of labeled and 

unlabeled data [8][11][12][13][14][15][16], and the other employs clustering 

algorithms for text classification [17]. This chapter surveys the current state of text 

categorization and the related approaches for using unlabeled data. 

 

2.1  Text Categorization 

 

Text categorization has been applied to a wide variety of practical applications: 

cataloging news articles [18], cataloging postings of UseNet discussion groups 

[12][14], classifying web pages into a symbolic ontology [19]; finding a person’s 

homepage [20], automatically threading and filtering email by content [21][22], and 

book recommendation [23].  

  Recently, a variety of machine learning techniques have been applied to this 
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literature: Naive Bayes [2][3], several rule learning algorithms [24][25][26], Rocchio 

algorithm [4], neural net [27], instance-based methods such as k-nearest neighbor [28], 

TCFP [6], Support Vector Machines (SVMs) [7][29], and a variety of boosting 

approaches [30][31]. Among these techniques, SVMs have recently shown much 

promise. However, no single technique has emerged as clearly better than the others, 

though some recent evidence suggests that k-NN and SVMs perform at least better 

than other algorithms when there is a lot of labeled data for each category of interest 

[32].  

  Most studies of text categorization simply represent a document as bags-of-words, 

which uses the number of times each word occurs in a document, or even just whether 

or not it occurred. On the other side, there are efforts to include more linguistic or 

semantic information for improvements of classification accuracy. Furnkranz uses 

shallow syntactic phrase patterns and finds some improvements to Naive Bayes and 

rule learning algorithms [33]. Two studies use WordNet, a semantic network of the 

English language, for text categorization [34][35]. There is a study to adjust the weight 

of words according to the importance of the sentence [36]. Results from this research 

reported an improved accuracy for text categorization. 

 

2.2  Learning with Unlabeled Data 

 

We here present a survey of using unlabeled data for learning classifiers. There are 

two approaches: the combination of labeled and unlabeled data 

[8][11][12][13][14][15][16] and the clustering algorithm for text categorization [17]. 
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2.2.1 Learning with Combining Labeled and Unlabeled Data 

Learning using labeled and unlabeled data can be referred to as semi-supervised 

learning. This allows taking advantage of the strengths of both supervised learning and 

unsupervised learning to learn accurate classifiers and to exploit unlabeled data, while 

getting rid of their common drawbacks; the enormous need for labeled data in 

supervised learning, and the inability to identify known categories and the difficulty in 

choosing a suitable number of clusters in unsupervised learning.  

 

A. The Expectation Maximization (EM) Approach 

The methods of learning classifiers from a combination of labeled and unlabeled data 

have been studied in the statistics community. Dempster presents the theory of the EM 

framework, an iterative technique for likelihood maximization [10]. It is applied to 

estimating maximum likelihood parameters for mixture models from labeled and 

unlabeled data [37]. Then it is used for classification [38].  

Using likelihood maximization of mixture models for combining labeled and 

unlabeled data for classification has recently been developed by the machine learning 

community [12][39] [40]. 

Nigam et al. study an EM technique for combining labeled and unlabeled data for 

text categorization [8][11][12]. They show that the accuracy of learned text classifiers 

can be improved by augmenting a small number of labeled training documents with a 

large pool of unlabeled documents. They introduce an algorithm for learning from 

labeled and unlabeled documents based on the combination of EM and a Naive Bayes 

classifier. The algorithm first trains a classifier using the available labeled documents, 

and probabilistically labels the unlabeled documents. It then trains a new classifier 

using the labels for all the documents, and iterates to convergence. This basic EM 
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procedure works well when the data confirms to the generative assumptions of the 

model. However, these assumptions are often violated in practice and poor 

performance can result; similar results are observed in their experiments with the 

Reuters and the WebKB data sets. Experimental results show that the use of unlabeled 

data reduces classification error by up to 30%. Furthermore, their algorithm is applied 

to the construction of a domain-specific search engine, Cora [12][13]. In a domain-

specific search engine, more specific information such as category hierarchy, 

keywords, and phrases can be useful. With a category hierarchy and human-provided 

keywords, a rule-list classifier can be built and it preliminarily can label unlabeled 

documents. An improved classifier is bootstrapped using the preliminary labeled 

documents and EM. The bootstrapping iterations are EM steps that use unlabeled data 

and hierarchical shrinkage to estimate parameters of a Naive Bayes classifier. 

However, since this method requires specific preliminary information such as a 

category hierarchy and human-provided keywords to build a rule-list classifier, its 

application can be restricted. 

 

B. The Semi-supervised Text Learning Approach Using an EM-like Scheme 

Lanquillon presents another approach for learning from labeled and unlabeled data 

[14][15]. Since the most straightforward way to make use of unlabeled data is through 

unsupervised learning, he exploits partitional clustering methods. Partitional clustering 

methods generate a single partition of the data in an attempt to recover natural groups 

present in the data. With the guidance of labeled data, the hope is that these groups 

will better match the underlying category structure. The semi-supervised partitional 

clustering algorithm allows the category label of each unlabeled document to change 

after each iteration like EM. For the semi-supervised partitional learning task, he 
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permits the use of any type of supervised learning algorithm such as single-prototype 

classifier (SPC) and SVMs, whereas Nigam depends on the Naive Bayes classifier 

[8][11][12].  

 

C. Discriminative Approaches 

A support vector machine discriminatively finds parameters for a linear separator 

when given labeled data [41]. Generally, this approach is equally applicable to 

scenarios with labeled and unlabeled data. They work to find the linear separator 

between the labeled examples of each category, which maximizes the margin over 

both the labeled and unlabeled examples. Joachims demonstrates the efficiency of this 

approach for several text categorization tasks [42]. Bennet and Emiriz achieve small 

improvements on some UCI data sets [16]. It seems that SVMs assume decision 

boundaries lie between categories in low-density regions of example space, and the 

unlabeled examples help to find these areas. However, Zhang and Oles argue both 

theoretically and experimentally that SVMs are unlikely to be helpful for classification 

in general [43].  

 

2.2.2 The Clustering Algorithm for Text Categorization 

Techniques for unsupervised document clustering have developed in the Information 

Retrieval (IR) community [44][45]. Slonim suggests to use clustering techniques for 

unsupervised document classification [17]. In this task, when a collection of unlabeled 

documents is given, he attempts to find clusters that are highly correlated with the true 

topics of the documents. Since no labeled examples are provided for the topics, he 

employs unsupervised clustering methods. In his paper, he suggests a new clustering 
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method, the sequential Information Bottleneck (sIB) algorithm. It has the performance 

and time & space complexity better than those of the agglomerative clustering 

algorithms. On various data sets, he verified that the performance of sIB is superior to 

the other unsupervised methods used in his experiments. Additionally, results are even 

competitive with a standard supervised Naive Bayes classifier. 
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Chapter 3  

Learning with Unlabeled Data Using the Title 

Word of Each Category 

 

 

3.1 Introduction 

 

The goal of Text Categorization is to classify documents into a certain number of pre-

defined categories. Text Categorization is an active research area in information 

retrieval and machine learning. A wide range of supervised learning algorithms has 

been applied to this area using a training data set of labeled documents. However, the 

previous supervised learning approaches have some problems. One of them is that 

they require a large, often prohibitive number of labeled documents for accurate 

learning. To overcome this, we introduce a new algorithm for learning from only 

unlabeled documents based on the bootstrapping method and the generative model 

such as a Naive Bayes classifier. Actually, unlabeled documents cannot give us any 

information for text classification because they do not have the most important 

information (their categories) for supervised learning approach. But our hope is that 

we know the categories which documents are classified into. Hence, we can select title 
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words that stand for categories, and make use of them as the seed words of our 

bootstrapping method. 

  We then extract keywords of each category by calculating semantic similarity 

between the title word and the other words. Since a generative model such as the 

Naive Bayes classifier needs more information to learn, we use contextual information. 

Context here is defined as 60 words. The title word and keywords are then used for 

choosing representative or centroid contexts of each category; they contain at least one 

of the title word and keywords. We call them centroid-contexts. As a result, we obtain 

a set of words in first-order co-occurrence with the title word and keywords. In 

addition, second-order co-occurrence information is gathered by assigning remaining 

contexts to context-cluster of each category; the remaining contexts do not contain any 

title word or keyword. For the assigning criterion, we use two kinds of methods. One 

method measures similarity between the centroid-contexts and the remaining contexts. 

It is a famous algorithm in the word sense disambiguation literature; the algorithm by 

Karov and Edelman [46]. The next method clusters contexts by the K-means 

algorithm: a well-known algorithm among clustering algorithms [44]. Generally, the 

second-order co-occurrence information is less sparse and more robust than the first-

order co-occurrence information. Finally we can construct the basic training data from 

the collected context-clusters of categories for the Naive Bayes generative model. 

From experimental results, we obtained 79.36% accuracy in the Newsgroups data 

set, 73.63% accuracy in the WebKB data set, and 88.62% precision-recall breakeven 

point in the Reuters data set. The results are comparable with that of supervised 

method. 

The outline of this chapter is as follows. Section 3.2 describes the feature selection 

method and the Naive Bayes classifier. They are used as the baseline through this 
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thesis. Section 3.3 presents how to create the training data in our proposed method in 

detail. In Section 3.4, we discuss the experimental results showing that we get 

meaningful accuracy even though using only unlabeled data. Section 3.5 discusses and 

evaluates our method and results. 

 

3.2 Feature Selection and a Naive Bayes Generative Model  

 

In this thesis, we use the 2 statistics method for feature selection [47] and the Naive 

Bayes generative model as a text classifier [2][3][48]. They are the methods basically 

used throughout this thesis.  

 

3.2.1 Feature Selection 

There are many feature selection methods in this literature. Yang and Pederson 

introduce and compare the feature selection methods in their paper [47]. As a result, 

the 2 statistics method shows the best performance among them. The size of 

vocabulary in our experiment is selected by ranking words according to their 2 

statistics with respect to the category. Using the two-way contingency table of a word t 

and a category c, the word-goodness measure is defined as follows: 
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where i) A is the number of times t and c co-occur, ii) B is the number of times t 

occurs without c, iii) C is the number of times c occurs without t, iv) D is the number 

of times neither c nor t occurs, and vi) N is the total number of documents. 
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To measure the goodness of a word in a global feature selection, we combine the 

category-specific scores of a word as follows: 
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Where m denotes the number of categories.  

 

3.2.2 A Naive Bayes Generative Model 

This section describes a probabilistic framework to characterize the nature of 

documents and classifiers. The framework defines a probabilistic generative model for 

the data, and embodies three assumptions about the generative process: i) the data is 

produced by a mixture model, ii) there is a one-to-one correspondence between 

mixture components and categories, and iii) the mixture components are multinomial 

distributions of individual words; the words of a document are produced 

independently of each category [12]. From these assumptions, we can derive the Naive 

Bayes classifier, a simple and commonly-used tool for text categorization, by finding 

the most probable parameters for the model. 

Documents are generated by a mixture of multinomial models, where each mixture 

component corresponds to a category. Formally, every document is generated 

according to a probability distribution defined by the parameters for the mixture model, 

denoted . Let there be |C| categories and a vocabulary of size |V|; each document d 

has |d| words in it. The probability distribution consists of a mixture of components 

},...,{
||1 Cj

ccCc = . Each component is parameterized by a disjoint subset of . A 

document, di, is created by first selecting a mixture component according to the 
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mixture weights (or category probabilities), P(cj|), and having this selected mixture 

component generate a document according to its own parameters, with distribution 

P(di|cj;). Thus, we can characterize the likelihood of document di with a sum of total 

probability over all mixture components [12]: 
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We here assume that there is a one-to-one correspondence between mixture model 

components and categories, and thus use cj to indicate the j-th mixture component as 

well as the j-th category. 

Here, we focus on the second term of Formula 3.3, and express the probability of a 

document given a mixture component in terms of its constituent features: the 

document length and the words in the document. Note that, in general, we assume 

document length is independent of category and the words of a document are 

generated independently of context: the standard Naive Bayes assumption. We further 

assume that the probability of a word is independent of its position within the 

document. Thus, the Naive Bayes expression for the probability of a document given 

its category is as follows: 
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Therefore, the parameters of an individual mixture component define a multinomial 

distribution over words; the collection of word probabilities, each written 
jt cw |

 , such 

that );|(
|


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 , where t={1,…,|V|} and 1);|( =

t
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cwP  . Since we assume 
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that, for all categories, document length is identically distributed, it does not need to 

be parameterized for classification. The remaining parameters of the model are 

category probabilities, written 
jc

 . Thus, the final parameters of model consist of 

multinomials and category probabilities: }: ;,:{
|

CcCcVw
jcjtcw jjt
=  . 

Learning a Naive Bayes text classifier is to estimate the parameters of the 

generative model by using a set of labeled training data, D. The estimate of the 

parameters   is written as ̂ . Since Naive Bayes uses the maximum a posteriori 

(MAP) estimate, it finds the value of   that is most probable given the evidence of 

the training data and a prior, that is, )|(maxarg DP  . 

The parameter estimation formulae that result from maximization with the data and 

our prior are the familiar ratios of empirical counts. The estimated probability of a 

word given a category, 
jt cw |

̂ , is simply the number of times word wt occurs in the 

training data for category cj, divided by the total number of word occurrences in the 

training data for that category. Here, the Laplace smoothing is used for the estimate of 

a word given a category, 
jt cw |

̂ . Smoothing is necessary to prevent zero probabilities 

for infrequently occurring words. 

The word probability estimates are as follows: 
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where N(wt,cj) is the count of the number of times word wt occurs in category cj. The 

category probabilities, 
jc

̂ , are estimated in the same manner, and also use the 

smoothing technique: 
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where |cj| is the number of examples in category cj, |D| is the number of all example in 

training data, and |C| is the number of categories. In this thesis, the example is used as 

different meanings in each learning method: a labeled document in a supervised 

approach and a labeled context in our method.  

By Formulae 3.5 and 3.6, the parameters are estimated from the training data. It is 

then possible to turn the generative model and calculate the probability that a 

particular mixture component (or category) generated a given document. We formulate 

this by an application of Bayes’s rule and substations using Formulae 3.3 and 3.4. 
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We give many assumptions for this generation of text documents; one-to-one 

correspondence between mixture components and categories, word independence, and 

document length distribution. But note that they are not all accepted in practical real-

world text data. Especially, words in a document are not independent of each other due 

to grammar and topicality. However, the Naive Bayes is one of the most commonly-

used classifiers for simplicity and high performance [2][3][6] [19][49][50]. 
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3.3 Learning a Naive Bayes from Unlabeled Data 

 

In the previous section, we presented how to learn a Naive Bayes classifier using 

labeled data. Here, we explain how to create labeled training data from unlabeled data 

and how to learn a Naive Bayes classifier with them. 

 

PreProcessing

Learning Classifier

Creating Keyword Lists of Each Category

Collected
Documents

 Pool of Contexts

Constructing Context-Clusters for Training

Title Word List

Extracting and Verifying Centroid-Contexts

Creating Context-Clusters 
(Similarity Measure)

Context-Clusters

 

 

 

Figure 3. 1 Overview of the proposed method 

 

The proposed method consists of three modules as shown in Figure 3.1: a module to 

preprocess collected documents, a module to construct context-clusters for training, 

and a module to learn a classifier using context-clusters. In the preprocess module, we 
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first segment the collected documents into sentences and do a POS tagging task to 

extract content words from each sentence. Next, we define contexts and make the 

collected documents into the unit of contexts. We then create labeled context-clusters 

using only the title word of each category. In the last module, we estimate the 

parameters from the labeled context-clusters for the generative model, the Naive 

Bayes classifier. 

We describe each module in the following subsections in detail. 

 

3.3.1 Preprocessing 

The preprocessing module has two main roles, extracting content words and 

reconstructing the collected documents into contexts. First of all, the contents of 

documents are segmented into sentences. We then extract content words from each 

sentence. To extract the content words, we use the Brill POS tagger [51]. Words with 

noun or verb POS tags are considered as content words.  

Generally, the supervised learning approach with labeled data regards a document 

as a unit of meaning. But since we do not have labeled documents, we define a new 

unit of meaning, context. Context refers to the part of a text that surrounds the 

particular word or a passage and determines its meaning. It has been studied in various 

areas of Natural Language Processing such as Word Sense Disambiguation [52][53]. 

Since we can use only the title word of each category, we need to bootstrap the 

meaning of each category using contextual information of the title word. Our final 

hope is to obtain the labeled data through this bootstrapping process. In this chapter, 

we define context as a sequence of 60 words within a document, and consider only 

contexts disregarding the unit of document. To extract contexts, we use sliding 

window techniques [54][55].  The window is slid from the first word of the 
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document to the last in the size of the window (60 words) and the interval of each 

window (30 words). Therefore, the final output of preprocessing is the set of context 

vectors that are represented as content words of each context. 

 

3.3.2 Constructing Context-clusters for Training 

This section presents how to create labeled data. Using title words, we automatically 

construct keywords for each category, which reflect the features of each category 

sufficiently. These are then used to extract centroid-contexts of each category that 

include at least one of the title word and keywords. We consider the centroid-contexts 

as core contexts of each category. To obtain more information of each category, we 

employ two kinds of methods. On the first method, we calculate the similarity 

between centroid-contexts and remaining contexts (the remaining contexts do not 

contain any title word or keyword) and assign each remaining context to category with 

the highest similarity value. As the other method, we cluster contexts using a 

clustering algorithm such as the K-means algorithm. By the above two methods, we 

can finally obtain the labeled context-cluster for each category. These context-clusters 

can be used as training data of a generative Naive Bayes classifier. As a result, we can 

do text classification task with a Naive Bayes classifier. 

 

A. Creating the Keyword List of Each Category 

The starting point of our method is that we have title words and collected unlabeled 

documents for classification. A title word can present the main meaning of each 

category but could be insufficient in representing any category for text categorization. 

Thus, we need to find words that are semantically related to a title word and we define 
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them as keywords of each category.  

There are several methods to calculate semantic relatedness between words: i) using 

a thesaurus such as WordNet [56], that records the synonym and hyponym 

relationships between words, or ii) estimating the degree of semantic similarity 

between words using co-occurrence information between words in a corpus [57]. We 

adopt the latter method in our method. 

The score of semantic similarity between a title word, T, and a word, W, is 

calculated by the cosine distance, as in the following formula: 
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where ti and wi represent the occurrence (binary value: 0 or 1) of words T and W in 

document i respectively, and n is the total number of documents in the corpus. This 

method can be considered to calculate the similarity score between words, based on 

the degree of their co-occurrence in the same document. We use a set of documents 

collected for training in order to calculate the similarity score. We here consider only 

words with noun POS tags as candidate words for keywords.  

Using this similarity score, we can construct the sorted list of words in each 

category. But the keywords for text categorization must have the power to discriminate 

categories as well as similarity with the title word. Thus we assign a word to the 

keyword list of a category with the maximum similarity score, and we recalculate the 

score of words in the category using the following formula: 
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where max
T  is the title word with the maximum similarity score of a word W, max

c  is 

the category of the title word max
T , and maxsecond

T is the title word with the second high 

similarity score of a word W. 

This formula means that words with high ranking in a category have a high 

similarity score with the title word of the category and distinct difference in similarity 

score with the other title words. We sort words assigned to each category according to 

the score calculated by Formula 3.9 in descending powers and choose top m words as 

a set of keywords in a category. In the WebKB data set, top five words are selected as 

keywords empirically. Table 3.1 shows the list of keywords for each category in the 

WebKB data set.  

 

Table 3. 1 The list of keywords for each category in the WebKB data set 

Category Title Word Keywords 

course course assignments, hours, instructor, class, fall 

faculty professor associate, ph.d, fax, interests, publications 

project project system, systems, research, software, information 

student student graduate, computer, science, page, university 

 

The keywords of Table 3.1 are shown as a form without stemming. The lists of 

keywords for other data sets are shown in the Appendix in detail. 

 

B. Extracting and Verifying Centroid-contexts 

Now we obtain the set of keywords for each category. Using them and title words, we 

can extend the vocabulary size of each category. For this, we use contextual 
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information; we define a unit of the context as a sequence of 60 words within a 

document and choose contexts that contain the keywords or the title word of a 

category. We call these contexts centroid-contexts of the category. A context with 

keywords or title words of two or more categories is excluded from centroid-contexts 

to prevent the ambiguousness of categories. Among centroid-contexts, some contexts 

could not have good features of a category even though they include the keywords or 

the title word of the category. To rank the importance of centroid-contexts, we can 

compute the importance score of each centroid-context as follows: 

 

1) Word weights are calculated using Term Frequency (TF) and Inverse Category 

Frequency (ICF) [58]. 

 

 The within-category word frequency (TFij) 

 

categoryth - in the occurs   words timesofnumber  the jtTF iij =         (3.10) 

 

 In information retrieval, Inverse Document Frequency (IDF) is generally used. But, 

since a context is a processing unit in our method, the document frequency cannot 

be counted. Moreover, ICF is defined by Cho and Kim, and its efficiency is 

verified in [58]. Thus, we use ICF in our method. ICF is calculated as follows: 

 

)log()log( ii CFMICF −=                  (3.11) 

 

where CFi is the number of categories that contain ti and M is the total number of 

categories. 

 

 The combination (TF-ICF) of the above Formulae 3.10 and 3.11, that is, weight wij 

of word ti in j-th category is calculated as follows:  
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2) Using word weights wij calculated by Formula 3.12, the score of a centroid-context 

Sk in j-th category cj is computed as follows: 
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where N is the total number of words in a centroid-context. 

 

3) The centroid-contexts of each category are sorted in a decreasing order according 

to the importance score. This order of centroid-contexts is used in the following 

process: Creating Context-clusters. 

 

As a result, we obtain a set of words in first-order co-occurrence with the title word 

and keywords from centroid-contexts of each category. 

 

C. Creating Context-clusters 

Here, we gather the second-order co-occurrence information by assigning remaining 

contexts to the context-cluster of each category. For the assigning criterion, we employ 

two kinds of algorithms. The algorithms for gathering the contextual information have 

been studied and developed in Word Sense Disambiguation literature [46][59]. We 

here focus on a famous algorithm for measuring similarity between contexts: the 

algorithm by Karov and Edelman [46]. Karov and Edelman define the relation 

between word similarity and context similarity. By this definition, a word similarity 

matrix and a context similarity matrix are built and the similarities are computed by an 

iterative process using these matrices [46]. We then measure similarity between 
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centroid-contexts of each category and the remaining contexts using this algorithm. In 

the next method, we cluster contexts into context-clusters by the K-means algorithm: 

the well-known algorithm among clustering algorithms [44][52]. Here, centroid-

contexts of each category are used for constructing the initial centroid vector of the K-

means algorithm. In this thesis, we reform a part of these algorithms on purpose to 

adjust them to our method. The two revised algorithms are described in detail in the 

following parts. 

 

(1) Measuring similarity based on word similarity and context similarity 

We here explain how to measure similarity between centroid-contexts and the 

remaining contexts and how to assign remaining contexts into the context-cluster of 

each category. 

 

1) Measurement of word and context similarity 

As similar words tend to appear in similar contexts, we compute the similarity by 

using contextual information [46][54][60]. In this thesis, words and contexts play 

complementary roles. That is, a context is represented by the set of words that it 

contains, and a word by the set of context in which it appears. Contexts are similar to 

the extent that they contain similar words, and words are similar to the extent that they 

appear in similar contexts. This definition is circular. Thus, it is applied iteratively 

using two matrices as shown in Figure 3.2. In this thesis, we set the number of 

iterations as 3, as is recommended by Karov and Edelman [46]. 
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Word
Similarity

Matrix
(WSM)

Context
Similarity

Matrix
(CSM)

 

Figure 3. 2 Iterative computation of word and context similarity 

 

In Figure 3.2, each category has a word similarity matrix WSMn and a context 

similarity matrix CSMn. In each iteration n, we update WSMn, whose rows and 

columns are labeled by all content words encountered in the centroid-contexts of each 

category and input remaining contexts. In that matrix, the cell (i,j) holds a value 

between 0 and 1, indicating the extent to which the i-th word is contextually similar to 

the j-th word. Also, we keep and update a CSMn, which holds similarity among 

contexts. The rows of CSMn correspond to the remaining contexts and the columns to 

the centroid-contexts. In this thesis, the number of input contexts of row and column 

in CSM is limited to 200, considering execution speed and memory allocation. 

 To compute the similarity, we initialize WSMn to the identity matrix. That is, each 

word is fully similar (1) to itself and completely dissimilar (0) to other words. The 

following steps are iterated until the changes in the similarity values are small enough. 

 

1. Update the context similarity matrix CSMn, using the word similarity matrix WSMn. 

2. Update the word similarity matrix WSMn, using the context similarity matrix CSMn. 
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2) Affinity formulae 

To simplify the symmetric iterative treatment of similarity between words and 

contexts, we define an auxiliary relation between words and contexts as affinity. A 

word W is assumed to have a certain affinity to every context, which is a real number 

between 0 and 1. It reflects the contextual relationships between W and the words of 

the context. If W belongs to a context X, its affinity to X is 1. If W is totally unrelated 

to X, the affinity is close to 0. If W is contextually similar to the words of X, its affinity 

to X is between 0 and 1. In a similar manner, a context X has some affinity to every 

word, reflecting the similarity of X to the contexts involving that word.  

Affinity formulae are defined as follows [46]. In these formulae, W  X means that 

a word belongs to a context: 
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=          (3.14) 

                   ),(max),( jnXWn XXsimWXaff
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In the above formulae, n denotes the iteration number, and the similarity values are 

defined by WSMn and CSMn. Every word has some affinity to the context, and the 

context can be represented by a vector indicating the affinity of each word to it.  

 

3) Similarity formulae 

The similarity of W1 to W2 is the average affinity of the contexts that include W1 to W2, 

and the similarity of a context X1 to X2 is a weighted average of the affinity of the 

words in X1 to X2. Similarity formulae are defined as follows: 
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The weights in Formula 3.16 are computed as the following methodology in the next 

section. The sum of weights in Formula 3.17, which is a reciprocal number of contexts 

that contain W1, is 1. These values are used to update the corresponding entries of 

WSMn and CSMn. 

 

4) Word weights 

In Formula 3.16, the weight of a word is a product of three factors. It excludes the 

words that are expected to be given unreliable similarity values. The weights are not 

changed in their process of iterations. 

 

1. Global frequency: Frequent words in total contexts are less informative of 

context similarity. For example, a word like ‘do’ frequently appears in any 

context. The formula is as follows: 
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where maxfreq(w) is the value of the highest frequency in total contexts. 

 

2. Log-likelihood factor: In general, the words that are indicative of the category 

appear in centroid-contexts more frequently than in total contexts. The log-
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likelihood factor captures this tendency. It is computed as follows [46]: 
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where Pr(wi) is estimated from the frequency of wi in the total contexts, and 

Pr(wi|w) from the frequency of wi in centroid-contexts. To avoid poor 

estimation for words with a low count in centroid-contexts, we multiply the log-

likelihood by Formula 3.20 where count(wi) is the number of occurrences of wi 

in centroid-contexts. For the words which do not appear in centroid-contexts, 

we assign the weight (1.0) to them. And, for the other words, we assign the 

weight that adds 1.0 to the score computed by Formula 3.19: 
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3. Part of speech: Each part of speech is considered as a weight. We assign the 

weight (1.0) to proper noun, common noun, and foreign word, and assign the 

weight (0.6) to verb. 

 

The weight of a word is the product of the above factors and each weight are 

normalized by the sum of weights of words in a context as follows [46]: 
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where F(wi, X) is the weight before normalization. 

 

5) Assigning remaining contexts to a category 

We first compute similarity of the remaining contexts to the centroid-contexts. Then 
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we decide a similarity value of each remaining context for each category using the 

following method: 
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In Formula 3.22, i) X is a remaining context, ii) },...,,{ 21 mcccC =  is a category set, and 

iii)  nc SSCC
i

,...,1=  is a controid-contexts set of category ci. 

Each remaining context is assigned to a category which has a maximum similarity 

value. But there may exist remaining contexts which do not belong to any category. To 

remove these remaining contexts, we set up a dropping threshold using normal 

distribution of similarity values as follows: 
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where i) X is a remaining context, ii)  is an average of similarity values; the similarity 

values, ),(
i

Cc
cXsim

i
, include those of all input remaining contexts in each iteration, iii)  

is a standard deviation of similarity values, and iv)  is a numerical value 

corresponding to the threshold (%) in normal distribution table.  

Finally, a remaining context is assigned to the context-cluster of any category, when 

the category has a maximum similarity above the dropping threshold value. 
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(2) K-means algorithm 

Here, we explain how to cluster the remaining contexts into the context-cluster of each 

category by a K-means algorithm. 

 

1) K-means algorithm in our method 

K-means is a hard clustering algorithm that defines clusters by the center of mass of 

their members [52]. We go through several iterations to assign each context to the 

cluster whose center is closest. After all contexts have been assigned, we re-compute 

the center of each clusters as the mean 


 of its members as follows: 

 




=

jcxj

x
c 

 1
                         (3.24) 

 

where cj is a cluster at each iteration, and x


 is a remaining context.  

In our method, we use the cosine distance metric as the distance function as 

follows: 
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We need a set of initial cluster centers in the beginning. Since the centroid-contexts of 

each category were constructed previously, each initial cluster center is created as the 

mean of its members. 
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2) Pseudo-code for the K-means algorithm  

 

 

3) Feature selection for the K-means algorithm 

Since the K-means algorithm must calculate similarity between all contexts and the 

center of each cluster at all iterations, it requires too much processing time. The 

processing time depends on the number of features and contexts. Hence, we limit the 

number of features by a standard feature selection procedure. Since we do not hold 

labeled data, we cannot use the 2 statistics method in this case. We thus employ the 

Mutual Information (MI) method for a feature selection procedure as follows [45]:  
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a set of remaining contexts :  nxxX


,...,1=  
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End 
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where w is a content word,  nddD ,...,1=  is a set of documents in unlabeled data. 

After we sort all words by a calculated mutual information score, we select the top 

words with the highest contribution to the mutual information about the documents. 

Through an experiment using a validation set, we determined the number of features 

as 4,000 (see Figure 3.5). 

 

3.3.3 Learning a Naive Bayes Classifier Using Context-clusters 

Finally, we obtain labeled training data: context-clusters. Using them, we can build a 

Naive Bayes classifier. Since training data are labeled as the context unit, we employ a 

Naive Bayes classifier because it can be built by estimating the word probability in not 

a document but a category. That is, the Naive Bayes classifier does not require labeled 

data with a unit of documents unlike other classifiers. 

  Here, we use the Naive Bayes classifier with minor modifications based on 

Kullback-Leibler Divergence. This method makes the same classifications as the 

original Naive Bayes classifier, but produces classification scores that are less extreme. 

It then reflects better uncertainty than those produced by Naive Bayes [19]. More 

precisely, we classify a document di according to the following formula: 
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where i) n is the number of words in document di, ii) wt is the t-th word in the 

vocabulary, iii) N(wt,di) is the frequency of word wt in document di. 



 38 

If the task is to classify a test document di into a single category, then the category 

with the highest posterior probability, )ˆ;|(maxarg 
ijj

dcP , is selected. 

To estimate the parameter for a word given a category, 
jt cw |

̂ , the Laplace 

smoothing is used as follows: 
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where N(wt,
jc

G ) is the count of the number of times word wt occurs in the context-

cluster (
jc

G ) of category cj. The category probabilities, 
jc

̂ , are estimated in the same 

manner as follows:  
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where |
jc

G | is the number of contexts in the context-cluster of category cj and |C| is the 

number of categories.  

 

3.4 Empirical Evaluation 

 

This section provides empirical evidence of the proposed method. In our experiments, 

results are based on three different kinds of data sets: UseNet newsgroups 

(Newsgroups), web pages (WebKB), and newswire articles (Reuters). 
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3.4.1 Data Sets and Experimental Setting 

 

The Newsgroups data set, collected by Ken Lang, contains about 20,000 documents 

evenly divided among 20 UseNet discussion groups [61][62][63]. Many of the 

categories fall into confusable clusters; for example, five of them are comp.* 

discussion groups, and three of them discuss about religion. However, we use only 16 

categories after removing 4 categories: 3 miscellaneous categories (talk.politics.misc, 

talk.religion.misc, and comp.os.ms-windows.misc) and 1 duplicate meaning category 

(comp.sys.ibm.pc.hardware). We regard these as unsuitable categories to be classified 

in our method because their title words have duplicate meaning with other category or 

comprehensive meaning. In our experiments, 3,200 documents (20%) are used for test 

data and the remaining 12,800 documents (80%) for training data. For fair evaluation, 

we use the five-fold cross-validation method. That is, each data set is split into five 

subsets, and each subset is used once as test data in a particular run while the 

remaining subsets are used as training data for that run. The split into training and test 

sets for each run is the same for all classifiers. Therefore, all results of experiments 

using this data set are averages of five runs. After removing words that occur only 

once or on a stop word list, the average vocabulary from five training data has 43,249 

words (no stemming). 

The second data set comes from the WebKB project at CMU [19]. This data set 

contains web pages gathered from university computer science departments. The 

pages are divided into seven categories: course, faculty, project, student, department, 

staff, and other. As used in other studies [2][12], we exploit the four most populous 

entity-representing categories: course, faculty, project, and student. The resulting data 

set consists of 4,198 pages. It is an uneven data set; the largest category has 1,641 
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pages and the smallest one has 503 pages. Using the same method as in the 

Newsgroups data set, the five-fold cross-validation method is used and the resulting 

average vocabulary from five training data has 18,742 words. 

The Reuters 21578 Distribution 1.0 data set consists of 12,902 articles and 90 topic 

categories from the Reuters newswire. Following several other studies in [7][12][64], 

we build binary classifiers for each of the ten most populous categories to identify the 

news topic. Since the documents in this data set can have multiple category labels, 

each category is traditionally evaluated with a binary classifier. To split train/test data, 

we follow a standard ‘ModApte’ split. The standard ‘ModApte’ train/test split divides 

the articles by time, such that the later 3,299 documents form the test set and the 

earlier 9,603 are available for training. We use all the words inside the title and body, 

and we use a stop word list and no stemming. The vocabulary from training data has 

12,001 words. 

About 25% of documents from training data of each data set are selected for a 

validation set. After all parameter values of our experiments are set from the validation 

set, we evaluate our method using these parameter values. 

 

3.4.2 Performance Measures 

 

We follow the standard definition of recall, precision, and F1 measure as performance 

measures as follows [7][50]: 

 

examples positive of #

sprediction positivecorrect  of #
  )( Recall =R             (3.30) 

sprediction positive of #

sprediction positivecorrect  of #
  )( Precision =P             (3.31) 
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PR

2RP
   1

+
=measureF                      (3.32) 

 

The F1 measure combines recall and precision with an equal weight. The recall, 

precision, and F1 measure can be first computed for individual categories, and then 

averaged over categories as a global measure of the average performance over all 

categories; this way of averaging is called macro-averaging. An alternative way, 

micro-averaging, is to count the decisions for all the categories in a joint pool and 

computes the global recall, precision, and F1 values for that global pool [50].  

Results on Reuters are reported as precision-recall breakeven points, which is a 

standard information retrieval measure for binary classification; Given a ranking of 

documents, the precision-recall breakeven point is the value at which precision and 

recall are equal [7][50]. 

Since a document in the Newsgroups and WebKB data sets has a single category 

label, micro-averaged accuracy, precision, recall, and F1 scores are all equal. Hence, 

all of the above measures can be used interchangeably in micro-averaged results. 

 

3.4.3 Empirical Evaluation 

We test our method through the following steps. First, using the validation sets of each 

data set, we set the number of keywords. We then set a dropping threshold value in the 

similarity measure algorithm and the number of feature in K-means algorithm from 

the validation set of the Newsgroups data set. Using the resulting parameter values, we 

conduct experiments and compare our method with a supervised learning method 

using the Naive Bayes classifier. 
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A. Setting Parameters Using Validation Set 

Here, we do experiments for setting parameters using the validation sets of each data 

set. We first show the changes of performance according to the number of keywords 

and observe the performance at each dropping threshold value of the similarity 

measure algorithm. Then we set the number of features for the K-means algorithm. 

 

(1) Setting the number of keywords 

First of all, we must determine the number of keywords in our method. The number of 

keywords in our experiment is limited by top n-th keyword from the ordered list of 

each category. Figure 3.3 displays the performance at different number of keywords 

(from 0 to 20) in each data set. Here, keywords means words from keyword lists 

created in Section 3.3.2 and the title word must be used. If we use zero keywords, it 

means that we use only the title word.  
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Figure 3. 3 The comparisons of the performance according to the number of keywords 
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As shown in Figure 3.3, we find that the number of keywords depends on each data 

set; we obtained the best performance at 2 keywords in the Newsgroups data set, at 5 

keywords in the WebKB data set, and at 3 keywords in the Reuters data set. As a result, 

we set the number of keywords to 2 in the Newsgroups data set, 5 in the WebKB data 

set, and 3 in the Reuters data set. We generally recommend the number of keywords to 

be from 2 to 5. 

 

(2) Setting the dropping threshold value in a similarity measure algorithm 

For removing the meaningless remaining contexts, we set a threshold value such as 

Formula 3.23 and drop the remaining contexts with a maximum similarity below the 

dropping threshold value. The Figure 3.4 shows the performance at each dropping 

threshold value in the Newsgroups validation set. 
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Figure 3. 4 The performance in each dropping threshold value 

 

This graph verifies that our method obtains the best performance in top 15% as the 



 44 

dropping value. Therefore, we use the top 15% as the dropping value in all the data 

sets. 

 

(3) Setting the number of features in the K-means algorithm 

To reduce high processing time of the K-means algorithm, the number of features is 

limited by the mutual information method such as Formula 3.26. Our experiment is 

done from 1,000 to 10,000 and the results are shown as Figure 3.5.  
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Figure 3. 5 The performance according to the number of features in the K-means algorithm 

 

As shown in Figure 3.5, we use 4,000 features in the following experiments.  

 

B. Comparison of the Remaining Context Assignment Algorithms 

We determined all parameter values for our experiments in previous section. Now we 

start our main experiments. Before going into main experiments, we compare two 

kinds of remaining context assignment algorithms: the similarity measure algorithm 
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and the K-means algorithm. Figure 3.6 shows the performance curve of each 

assignment algorithm by using the Newsgroups validation set. Since the similarity 

measure algorithm obtains the better performance over all intervals in Figure 3.6, our 

method in the following experiments is based on the similarity measure algorithm. 
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Figure 3. 6 The performance curves for comparison of context clustering methods using the 
Newsgroups validation set 

 

C. Results in the Newsgroups, WebKB, and Reuters Data Sets 

In main experiments, we use all three data sets (Newsgroups, WebKB, and Reuters) 

and employ a supervised Naive Bayes classifier for comparing our method with the 

supervised method; the supervised Naive Bayes classifier learns from human-labeled 

documents. Figure 3.7 and Table 3.2 report the results from three data sets. In Figure 

3.7, the horizontal axes indicate the number of features, vocabulary size, and the 

vertical axes indicate the average micro-average F1 scores on test sets in five-fold 

validation. Performance in the Newsgroups data set increases with the number of 

features but performance in the WebKB data set is similar regardless of the number of 
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features. In the Reuters data set, we use train data and test data by standard ‘ModApte’ 

split for evaluation. Table 3.2 presents precision-recall breakeven points in each 

category showing performance of binary classifiers on the Reuters data set with our 

method and the supervised Naive Bayes classifier. 
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(a) The Newsgroups data set 
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 (b) The WebKB data set 

Figure 3. 7 The comparison of our method and the supervised Naive Bayes classifier 
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Table 3. 2 The precision-recall breakeven points in the Reuters data set 

Category Our Method Supervised NB 

acq 94.01 96.24 

corn 62.5 66.07 

crude 80.42 89.41 

earn 96.13 97.42 

grain 74.49 92.61 

interest 77.86 77.09 

money-fx 79.32 78.21 

ship 77.52 85.39 

trade 80.5 81.35 

wheat 61.97 67.6 

micro-avg. 88.62 91.64 
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Figure 3. 8 The performance differences of the best micro-avg. F1 scores or precision-recall 
break-even points in three data sets: our method vs. supervised NB 

 

Table 3. 3 The performance differences of the best micro-avg. F1 scores or precision-recall 
break- even points in three data sets: our method vs. supervised NB 

Data Set Our method Supervised NB Difference 

Newsgroups 79.36 91.72 -12.36 

WebKB 73.63 85.29 -11.66 

Reuters 88.62 91.64 -3.02 
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As shown in Table 3.3, we obtained a 79.34% micro-average F1 score in the 

Newsgroups data set, a 73.63% micro-average F1 score in the WebKB data set, and an 

88.62% micro-average precision-recall breakeven point in the Reuters data set. The 

differences between our method and the supervised Naive Bayes classifier in each data 

set are 12.36% in the Newsgroups data set, 11.66% in the WebKB data set, and 3.02% 

in the Reuters data set. Especially, the result of Reuters reached 3.02% close to that of 

the supervised Naive Bayes classifier. Since we use only unlabeled data and title 

words, the performance of our method is much more significant. 

 

3.5 Discussion 

 

From our experimental results, our method in the Reuters data set almost achieved 

comparable performance with the supervised method. As previously noted in [61], 

categories like wheat and corn are known for a strong correspondence between a small 

set of words (like our title words and keywords) and the categories, while categories 

like acq are known for more complex characteristics. Since the categories with narrow 

definitions attain best classification with small vocabularies, we can achieve good 

performance in the Reuters data set with our method which depends on title words. 

In the Newsgroups and WebKB data sets, we could not attain comparable 

performance with the supervised method. In fact, the categories of these data sets are 

somewhat confusable. In the Newsgroups data set, many of the categories fall into 

confusable clusters: for example, five of them are comp.* discussion groups, and three 

of them discuss religion. In the WebKB data set, meaningful words of each category 

also have high frequency in other categories. Worst of all, even title words (course, 

professor, faculty, project) have a confusing usage. We think these factors contributed 

to a comparatively poor performance of our method.  
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To improve our method, we propose to use the documents automatically labeled 

from our method as training data. But a problem is that the machine-labeled data 

contains many incorrectly labeled data. Thus, we need a robust classifier from noisy 

data. Now we propose a new classifier, TCFP. This classifier is robust from noisy data 

and it has fast execution speed. The next chapter presents it in detail. 
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Chapter 4  

The TCFP Classifier for Learning with Machine-

labeled Data 

 

 

4.1 Introduction 

 

In Chapter 3, we can classify the original collected documents using the bootstrapping 

method and the generative model, Naive Bayes classifier, with only title words and 

unlabeled documents. We can finally obtain a labeled training data of a document unit: 

machine-labeled document data. Therefore, we can learn other text classifiers (TCFP, 

Rocchio, k-NN, and SVMs) using the machine-labeled document data in a supervised 

learning manner. This is an EM-like method. In a previous work, Nigam verified that 

EM can hurt accuracy when labeled data are sparse such as in the WebKB and Reuters 

data sets [12]. Moreover, in our experiments, EM also showed bad performance in the 

WebKB and Reuters data sets. Therefore, we do not employ the EM algorithm and we 

learn classifiers using the machine-labeled data generated from our method.  

However, when the machine-labeled document data is used as training data, a 

problem comes from many incorrectly labeled data: noisy data. Since the machine-
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labeled data is created by our method, they generally include much more incorrectly 

labeled data than the human-labeled data. Hence, a classifier with robustness from 

noisy data is more useful in this application. We here introduce a new classifier with 

robustness from noisy data; we call this classifier Text Categorization using Feature 

Projections (TCFP). Furthermore, TCFP is a fast classifier in execution and it is a very 

simple algorithm to learn and build. 

The main idea of the TCFP classifier starts from the Nearest Neighbor algorithm 

[5][65]. In particular, the k-Nearest Neighbor (k-NN) classifier in text categorization is 

one of the state-of-the-art methods including the Support Vector Machines (SVMs) 

and Boosting algorithms [1]. Since the Nearest Neighbor algorithm is much simpler 

than other algorithms, the k-NN classifier is intuitive and easy to understand, and it 

learns quickly. But main weak points of k-NN are that its running time is too much 

slow and its performance degrades rapidly with the introduction of noisy data and 

irrelevant features. The reason is that its main computation is the on-line scoring of all 

training documents to find the k nearest neighbors of a test document. In order to 

reduce these problems in on-line ranking, a number of techniques have been studied. 

Techniques such as the instance pruning technique [66] and feature projections [67] 

are well known.  

The instance pruning technique is one of the most straightforward ways to 

accelerate classification speed in a nearest neighbor system. It removes instances from 

the training data and thus reduces time and storage requirements. It also reduces the 

sensitivity of the system to noise. So far a large number of such pruning techniques 

have been proposed. To name a few, there are the Condensed Nearest Neighbor Rule 

[68], IB2 and IB3 [69], the Typical Instance Based Learning [70], and the Reduction 

Techniques (RT1-RT3) [71]. These pruning techniques and others are surveyed in 
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depth by Wilson et al. [66]. They then develop several new pruning techniques such as 

DROP1-DROP5. Of these, DROP4 shows the best performance. 

Another trial to overcome the problem exists in feature projections. Akkus and 

Guvenir present a new approach to classification based on feature projections [67]. 

They call their resulting algorithm k-Nearest Neighbor on Feature Projections (k-

NNFP). In this approach, the classification knowledge is represented as sets of 

projections of training data on each feature dimension. The classification of a test 

example is based on the voting by the k nearest neighbors of each feature of the test 

example. The resulting system allows the classification to be much faster than that of 

k-NN, and its performance is comparable with k-NN. 

In this chapter, we present a particular implementation of text categorization using 

feature projections. When we apply the feature projection technique to text 

categorization, we can find several problems caused by the special properties of text 

categorization. We describe these problems in detail and then we propose a new 

approach to solve them. The proposed classifier, TCFP, shows better performance than 

k-NN. It is much faster than k-NN and it also has the advantage of robustness from 

noisy data. 

  The rest of this chapter is organized as follows. Section 4.2 simply presents k-NN, 

the DROP4 pruning algorithm, and the k-NNFP algorithm. Section 4.3 explains a new 

approach using feature projections in detail. Section 4.4 describes other classifiers 

used in our experiments. In Section 4.5, we discuss empirical results in our 

experiments and an analysis for strong points of the new proposed classifier. The final 

section presents conclusions. 
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4.2 k-NN, the DROP4 Pruning Algorithm, and the k-NNFP 

Algorithm 

 

In this section, we simply describe k-NN, the DROP4 pruning algorithm, and the k-

NNFP algorithm. 

 

4.2.1 The k-Nearest Neighbor (k-NN) Algorithm 

As an instance-based classification method, k-NN has been known as an effective 

approach to a broad range of pattern recognition and text classification problems 

[65][72]. In the k-NN algorithm, a new input instance (or example) should belong to 

the same category as its k nearest neighbors in the training data set. After all the 

training data is stored in memory, a new input instance is classified with the category 

of k nearest neighbors among all stored training instances. 

For the distance measure and the document representation, we use a conventional 

vector space model; each document is represented as a vector of term weights and 

similarity between two documents is measured by the cosine value of the angle 

between the corresponding vectors. 

Let a document d with n terms (t) be represented as the feature vector: 

 

= ),(),...,,(),,( 21 dtwdtwdtwd n


                 (4.1) 

 

We compute the weight vectors for each document using one of conventional TF-

IDF schemes [73]. The weight of term t in document d is calculated as follows: 
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is the weight of term t in document d, 
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is the within-document Term Frequency (TF), 
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nN is the Inverted Document Frequency (IDF), 

iv) N is the number of documents in the training set, 

v) nt is the number of training documents in which t occurs, 
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
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Given an arbitrary test document d, the k-NN classifier assigns a relevance score to 

each candidate category cj using the following formula: 
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where )(dR
k


denotes a set of the k nearest neighbors of document d and Dj  is a set 

of training documents in category cj. 

 

4.2.2 The DROP4 Pruning Algorithm 

This section presents an instance pruning algorithm called the Decremental Reduction 

Optimization Procedure 4 (DROP4) [66]. The procedure of this algorithm is 

decremental, meaning that it begins with the entire training set and then removes 

instances that seem to be unnecessary. 

Before the DROP4 algorithm is described, some notation is introduced here. A 

training set T consists of n instances (i). Each instance i has k nearest neighbors. Each 
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instance i also has a nearest enemy which is the nearest instance e with a different 

category from i. Those instances, which have i as one of their k nearest neighbors, are 

called associates of i. 

DROP 4 uses the following basic rule to decide if it is safe to remove an instance i 

from the instance set S (where S=T originally). 

 

Remove instance i from S if at least as many of its associates in T  

would be classified correctly without i. 

 

The order of removal can be important to the success of a pruning algorithm. DROP4 

initially sorts instances in S by the distance to their nearest enemy. And then the 

instances are checked for removal by beginning at the instance which is farthest from 

its nearest enemy. This tends to remove instances farthest from the decision boundary 

first, which increases the chance of retaining border points. However, noisy instances 

are also border points, so it is desirable to remove the noisy instances before any of the 

others so that the rest of the algorithm is not influenced heavily by the noisy instances. 

Therefore, DROP4 uses a noise-filtering pass before sorting the instances in S. For the 

noise-filtering pass, DROP4 removes each instance only if (1) it is misclassified by its 

k nearest neighbors and (2) it does not hurt the classification of its associates. 

 

4.2.3 The k-Nearest Neighbor on Feature Projection (k-NNFP) Algorithm 

The k-NNFP is a variant of the k-NN method. The main difference is that instances are 

projected on their features in the n-dimensional space (see Figure 4.1) and distance 

between two instances is calculated according to a single feature. The distance 

between two instances di and dj with regard to m-th feature tm is distm(tm(i), tm(j)) as 

follows: 
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),(),())(),(( jmimmm dtwdtwjtitdist
m


−=                 (4.4) 

    

where )(itm denotes the m-th feature t in an instance di and ),( im dtw


is the weight of 

term tm in document di. 

The classification on a feature is done according to votes of the k-nearest neighbors 

of that feature in a test instance; the category of a nearest neighbor for the vote follows 

that of document including the nearest neighbor. The final classification of the test 

instance is determined by a majority voting from individual classifications of each 

feature. If there are n features, this method returns n k votes whereas the k-NN 

method returns k votes. 

 

4.3 A New Approach of Text Categorization on Feature 

Projections 

 

First of all, we show an example of feature projections in text categorization for easier 

understanding. We then enumerate the problems to be considered when the feature 

projection technique is applied to text categorization. Finally, we propose a new 

approach using feature projections to overcome these problems. 

 

4.3.1 An Example of Feature Projections in Text Categorization 

We give a simple example of the feature projections in text categorization. To simplify 

our description, we suppose that all documents have just two features (f1 and f2) and 

two categories (c1 and c2). The TF-IDF value by Formula 4.2 is used as the weight of a 
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feautre. Each document is normalized as a unit vector and each category has three 

instances:  3211 ,, dddc = and  6542 ,, dddc = . Figure 4.1 shows how document vectors 

in a conventional vector space are transformed into feature projections and stored on 

each feature dimension. The result of feature projections on a term (or feature) can be 

seen as a set of weights of documents for the term. On feature projections, the 

category of each element for a feature is set to the category of documents including 

the feature. Since a term with 0.0 weight is useless, the size of the set equals the 

Document Frequency (DF) value of the term.  

 

 

Figure 4. 1 Feature representation on feature projections in Text Categorization 
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4.3.2 Problems in Applying Feature Projections to Text Categorization 

 

There are three problems: (1) the diversity of Document Frequency (DF) values of 

terms, (2) the property of using TF-IDF values as the weight of features, and (3) the 

lack of contextual information.  

 

A. The Diversity of Document Frequency Values of Terms 

Table 4.1 shows a distribution of the DF values of the terms in the Newsgroups data 

set. The numerical values of Table 4.1 are calculated from a training data set with 

16,000 documents and 10,000 features chosen by feature selection. The k in the fourth 

column means the number of nearest neighbors selected in k-NNFP; the k in k-NNFP 

was set to 20 in our experiments. 

 

Table 4. 1 A distribution of the DF values of the terms in the Newsgroups data set 

Average DF Maximum DF Minimum DF 
The number of features 

DF < k (20) 

54.59 8,407 4 6,489 

 

According to Table 4.1, more than a half of the features have DF values less than k 

(20). This result can be also explained by Zipf’s law. The problem is that some 

features have DF values less than k while other features have DF values much greater 

than k. For features with the DF value less than k, all the elements of the feature 

projections on the feature could and should participate in voting. In this case, the 

number of elements chosen for voting is less than k. On the other hand, for features 

with the DF value more than k, only maximum k elements among the elements of the 
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feature projections should be chosen for voting. Therefore, we need to normalize the 

voting ratio for each feature. As shown in Formula 4.5, we use a proportional voting 

method to normalize the voting ratio. 

 

B. The Property of Using TF-IDF Values as the Weight of Features 

The TF-IDF value of a term is its presumed value for identifying the content of a 

document [74]. Therefore, on feature projections, elements with a high TF-IDF value 

for a feature must become more useful classification criterions for the feature than any 

elements with low TF-IDF values. In order to apply this property to our algorithm, we 

use only elements with TF-IDF values above the average TF-IDF value for voting. 

The selected elements also participate in proportional voting with the same importance 

as the TF-IDF value of each element. The voting ratio of each category cj in a feature 

tm of a test document d is calculated by the following formula: 

 




=

mmmm

jj

Ilt

lm

Ilt

mlmm dtwltcydtwtcr

)()(

),())(,(),(),(


           (4.5) 

 

In Formula 4.5, Im denotes a set of elements selected for voting and  1.0))(,( ltcy mj  

is a function; if the category for an element )(ltm  is equal to jc , the output value is 1. 

Otherwise, the output value is 0. 

 

C. The Lack of Contextual Information 

Since each feature votes separately on feature projections, contextual information is 

missing. Thus, we use co-occurrence frequency to apply contextual information to our 

algorithm. 
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To calculate a co-occurrence frequency value between two terms ti and tl, we count 

the number of documents that include both terms. It is separately calculated in each 

category of training data. Finally, the co-occurrence frequency value of the two terms 

is obtained by a maximum value among co-occurrence frequency values in each 

category as follows: 

 

   ),,(  max),( jli
c

li cttcottco
j

=                  (4.6) 

 

where ),( li ttco denotes a co-occurrence frequency value of ti and tl, and 

),,( jli cttco denotes a co-occurrence frequency value of ti and tl in category cj. 

TF-IDF values of two terms ti and tj in a test document d are modified by reflecting 

the co-occurrence frequency value. That is, terms with a high co-occurrence frequency 

value and a low category frequency value have higher term weights as follows: 
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       (4.7) 

 

where i) tw(ti,d) denotes a modified term weight assigned to term ti, ii) cf denotes the 

category frequency that is the number of categories in which ti and tj co-occur, and 

iii) ),( lttmaxco
k

is the maximum value among all co-occurrence frequency values. 

 

D. The Final Voting Score Reflecting the Improvements and the Information of 

Features 

Through a feature selection process, we can measure how much information each 

feature contributes to our knowledge for correct classification; we employ the 2 
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statistics for feature selection in this paper. Moreover, since each feature in feature 

projections separately participates in voting, we can use the information of features (a 

calculated 2 statistics value) as an important weight in voting. As a result, in order to 

apply the improvements (Formulae 4.5 and 4.7) and the information of features to our 

algorithm, we calculate the voting score of each category jc  in the m-th feature mt of 

a test document d as the following formula: 

 

))(1log(),(),(),( 2
mmmm ttcrdttwtcvs

jj
+=


            (4.8) 

 

where )(2

mt denotes the calculated 2 statistics value of mt . 

So far, we have explained how to calculate the voting score of each feature in each 

category. The voting score of a test document can be gained by summing up the voting 

scores of each feature in the test document. However, when the number of training 

data is unevenly distributed, a problem can occur. The cause of the problem is that a 

larger category has more voting candidates than a smaller category. To normalize the 

number of voting candidates in each category, we calculate the normalization factor 

(nf(cj)) and apply it to the major voting score of each category as follows: 

 

  ji
c

j cccnf
i

 max)( =                     (4.9) 

)(][][ jjj cnfcvotecvote =                  (4.10) 

 

where |cj| denotes the number of training documents in category cj. 

  In Formula 4.9, the normalization factor can be adjusted according to the degree of 

skewness of the number of training data. 
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4.3.3 A New Text Categorization Algorithm Using Feature Projections 

 

A new text categorization algorithm using feature projections, TCFP, is described in 

the following: 

 

In the training phase, our algorithm needs only simple process; the training documents 

are projected on each of their features, and numerical values for the proportional 

voting (Formula 4.5) and co-occurrence frequency values (Formula 4.6) are calculated. 

 

Given: test document: d


 =<t1,t2,…,tn>, a category set: C={c1,c2,…,cm} 

 

Begin 

For each category cj 

vote[cj] =0 

For each feature ti 

      tw(ti,d) is calculated by Formula 4.7 

 

/* majority voting*/ 

For each feature ti 

     For each category cj 

        vote[cj]=vote[cj]+vs(cj,ti) by Formula 4.8 

 

/*normalize majority voting*/ 

For each category cj 

     vote[cj]=vote[cj]*nf(cj) by Formula 4.9  

 

prediction = ][maxarg j
c

cvote
j

 

Return prediction 

End 
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4.4 Other Conventional Classifiers Used in Our Experiments 

 

To compare TCFP to other conventional classifiers except k-NN, we implement Naive 

Bayes, Rocchio, and SVMs. In this section, these classifiers are briefly described: for 

the Naive Bayes classifier, we use the same classifier as described in Chapter 3. For 

Rocchio and SVMs, we use the same TF-IDF scheme as Formulae 4.1 and 4.2. 

 

4.4.1 Rocchio 

Rocchio is an effective method using relevance judgments for query expansion in 

information retrieval and filtering [4][73]. Applied to text categorization, it uses a 

vector to represent each category and document, and computes their similarity using 

the cosine value of these two vectors. Then a test document is assigned to a category 

with the highest cosine score. The vector representation for a category, called a 

prototype or centroid, is constructed by combining document vectors into a prototype 

vector jc


 for each category cj. First, both the document vectors of the positive 

examples and those of the negative examples are summed up. The prototype vector is 

then calculated as a weighted difference of each as follows: 
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where N is the number of documents in the training data set, and ,  are parameters 

that adjust the relative impact of positive and negative training examples. 
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4.4.2 Support Vector Machines 

Support Vector Machines (SVMs) is proposed by Vapnik for solving two-class pattern 

recognition problems [41]. The SVM problem is to find the decision surface that 

maximizes the margin between positive examples and negative examples in a training 

data.  

The decision surface by SVM for linearly separable space is a hyperplane as 

follows:  

 

0=− bxw


                         (4.12) 

 

x


 is an arbitrary test data vector, and the vector w


 and the constant b are learned 

from a training data set.  

The SVM problem can be solved using quadratic programming techniques [41]. 

The algorithms for solving linearly separable cases can be extended for solving 

linearly non-separable cases by mapping the original data vectors to a space of higher 

dimensions. 

Since the SVM is a binary classifier, we must extend it to a multi-class classifier. 

There are several methods of multi-class classifiers for SVMs [75]. We employ the 

One-Against-the-Rest method among them. This method requires k binary classifiers 

)(1  )( kjxf
jc

  to be constructed for all categories. In training for category cj, all 

data of category cj are used as positive examples and all data of the other categories as 

negative examples. Given a test example x, its category c is determined by the 

classifier that gives the largest discriminating function value as follows: 
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Joachims implemented an efficient SVMs toolkit, SVMlight [7]. This toolkit is used in 

our experiments. 

 

4.5 Empirical Evaluation  

 

In this section, we provide empirical evidence that TCFP is a most useful classifier for 

our method in using machine-labeled training data. First of all, we verify the 

superiority of TCFP using the conventional human-labeled data in a supervised 

manner. And then we discuss the results from experiments of our method with the 

machine-labeled data. Results on our method show that TCFP achieved the best 

performance in all three data sets. For the conventional human-labeled data, we use 

three different test data sets as used in Chapter 3: UseNet newsgroups (Newsgroups), 

web pages (WebKB), and newswire articles (Reuters).  

 

4.5.1 Data Sets and Experimental Setting 

The Newsgroups data set, collected by Ken Lang, contains about 20,000 articles 

evenly divided among 20 UseNet discussion groups [61][62][63]. Contrary to 

experiments in Chapter 3, we use all 20 categories in this chapter. After removing 

words that occur only once or on a stop word list, the average vocabulary from five 

training data has 51,325 words (with no stemming).  

The second data set comes from the WebKB project at CMU [19]. As used in 
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Chapter 3, we use the four most populous entity-representing categories: course, 

faculty, project, and student. The resulting data set consists of 4,198 pages with a 

vocabulary of 18,742 words. It is an uneven data set; the largest category has 1,641 

pages and the smallest one has 503 pages. 

The Reuters 21578 Distribution 1.0 data set consists of 12,902 articles and 90 topic 

categories from the Reuters newswire. We build binary classifiers for each category to 

identify the news topic. Contrary to experiments in Chapter 3, we here construct all 90 

binary classifiers for 90 topic categories. To split train/test data, we follow a standard 

‘ModApte’ split. We use all the words inside the title and body. We use a stop word list 

and no stemming. The vocabulary from training data has 14,219 words. 

 

For fair evaluation in the Newsgroups and WebKB data sets, we use the five-fold 

cross-validation method. Therefore, all results of the experiments are averages of five 

runs. 

To compare TCFP with other algorithms for improving execution speed, we 

implement k-NNFP and k-NN with pruning. We use DROP4 as a pruning technique 

[66]. With DROP4, only about 26% of the original training documents in data sets is 

retained. The k in k-NNFP is set to 20 and the k in k-NN with pruning is set to 30. In 

addition, we implement other conventional classifiers: k-NN, Naive Bayes, Rocchio, 

and SVMs. The k in k-NN is set to 30, and =16 and =4 are used in the Rocchio 

classifier. For SVMs, we use the linear model offered by SVMlight. 

 

As performance measures, we follow the standard definition of recall (r), precision 

(p), and F1 measure, (2rp/(r+p)) [50]. Recall is the probability that a document 

belonging to any category is classified into this category and Precision is the 
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probability that a document predicted to be in any category is classified into this 

category. The F1 measure balances recall and precision in a way that gives them equal 

weight. Results on Reuters are reported as precision-recall breakeven points, which is 

a standard information retrieval measure for binary classification [50]. For evaluating 

performance average across categories, we use the micro-averaging method [50]. 

For feature selection, we employ the 2 statistics method [47]. 

 

 

4.5.2 Experimental Results in the Supervised Manner Using the Human-

labeled Data Set 

 

A. Comparing the Performances of TCFP, k-NN, k-NN with Pruning, and k-

NNFP 

Figure 4.2 and Table 4.2 show results from TCFP, k-NN, and other algorithms for 

compensating the drawbacks of the k-NN algorithm (k-NN with pruning and k-NNFP) 

in the Newsgroups and WebKB data sets. In addition, we add another type of TCFP to 

our experiment. This is TCFP without contextual information, which does not use 

Formula 4.7 for contextual information. 

As a result, TCFP achieved the highest micro-average F1 score on both test data sets. 

Also, TCFP without contextual information presented nearly the same performance as 

TCFP. Although, in all vocabulary sizes, TCFP without contextual information 

achieved a little lower performance than TCFP, it can also be a useful classifier due to 

its simplicity and fast execution speed (see Table 4.6).  
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(a) The Newsgroups data set 
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(b) The WebKB data set 

Figure 4. 2 The classification performance according to the number of features  

 

Table 4. 2 The best micro-average F1 scores of each classifier 

Data Set TCFP 
TCFP 

without context 
k-NN k-NNFP 

k-NN 

with pruning 

Newsgroups 86.57 86.46 85.92 82.37 81.91 

WebKB 88.07 86.52 84.82 82.77 83.81 

 



 69 

Since the Reuters data set can have documents with multiple category labels, we build 

binary classifiers for each category. Table 4.3 shows the precision-recall breakeven 

points on the ten most frequent Reuters categories and their micro-average 

performance. Results on the Reuters data set are also similar in performance to those 

of the previous two data sets. That is, TCFP also achieved the best micro-average 

precision-recall breakeven point in the Reuters data set. Note that, as shown in Table 

4.2 and Table 4.3, k-NNFP and k-NN with pruning algorithms are inferior to TCFP 

although they achieved faster execution speed than k-NN (see Table 4.6). 

 

Table 4. 3 Precision-recall breakeven points showing the performance of binary classifiers on 
the Reuters data set 

Category TCFP 

TCFP 

without 

context 

k-NN k-NNFP 
k-NN with 

pruning 

acq 94.29 93.6 94.57 90.54 93.32 

corn 75 75 78.57 60.71 78.57 

crude 84.65 79.36 82.01 82.53 80.42 

earn 97.42 96.59 95.86 94.2 95.03 

grain 84.56 84.56 80.53 78.52 78.52 

interest 76.33 71.75 74.04 69.46 72.51 

money-fx 72.06 72.06 76.53 73.18 74.86 

ship 84.26 83.14 78.65 87.64 79.77 

trade 72.03 71.18 79.66 63.55 78.81 

wheat 77.46 76.05 64.78 67.6 70.42 

micro-avg. 90.01 88.8 88.93 86.26 88.23 

 

B. Comparing the Performance of TCFP and the Conventional Classifiers (k-NN, 

Naive Bayes, Rocchio, and SVMs) 

For further evaluation, we implement other conventional classifiers: k-NN, Naive 

Bayes, Rocchio, and SVMs, and we compare them with TCFP. The classification 

performance of each classifier is shown in Figure 4.3, Table 4.4, and Table 4.5. 
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(a) The Newsgroups data set 
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(b) The WebKB data set 

Figure 4. 3 The classification performance according to the number of features 

 

Table 4. 4 The best micro-average F1 scores of each classifier 

Data Set TCFP k-NN SVM NB Rocchio 

Newsgroups 86.57 85.92 87.97 82.79 82.37 

WebKB 88.07 84.82 91.75 85.29 86.05 
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Table 4. 5 Precision-recall breakeven points showing the performance of binary classifiers on 
the Reuters data set 

Category TCFP k-NN SVM NB Rocchio 

acq 94.29 94.57 96.94 93.88 88.31 

corn 75 78.57 91.07 64.28 66.07 

crude 84.65 82.01 86.24 84.12 78.3 

earn 97.42 95.86 98.62 96.41 96.13 

grain 84.56 80.53 94.63 81.87 79.86 

interest 76.33 74.04 78.62 74.04 73.28 

money-fx 72.06 76.53 79.88 73.18 64.24 

ship 84.26 78.65 87.64 82.02 80.89 

trade 72.03 79.66 79.66 72.03 75.42 

wheat 77.46 64.78 84.5 63.38 77.46 

micro-avg. 90.01 88.93 93.32 88.62 86.47 

 

The results show that TCFP is superior to k-NN, Naive Bayes, and Rocchio classifiers. 

But TCFP produced lower performance than SVMs, which has been reported as the 

classifier with the best performance in this literature. Although TCFP showed lower 

performance than SVMs, TCFP has several strong points in comparison with SVMs. 

Especially, TCFP is more robust from noisy data and it has faster execution speed. 

These are discussed in the following section in detail. 

 

C. Analysis of Running Time Observation and Robustness from Noisy Data 

TCFP overcomes the weaknesses of k-NN, including slow execution speed and 

sensitivity to noise training data, while it maintains the strong points of k-NN, 

including the simplicity of algorithm, fast learning process, and high performance. On 

experimental results, TCFP produced high performance even though it showed a little 

lower performance than SVMs. Especially, TCFP outperformed k-NN in all three data 

sets. Furthermore, since TCFP has a simple and fast learning process like k-NN, it can 

be a proper classifier for incremental learning. On the contrary, the training process of 

SVMs can be very complicated and time consuming, especially when dealing with 

noisy data. In addition, SVMs have some weaknesses such as slow running time and 
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sensitivity to noisy data like k-NN. In order to verify the superiority of TCFP in 

execution speed and robustness from noisy data, we observed the running time in our 

experiments and conducted extra experiments for evaluating the robustness of each 

classifier from noisy data. The results are reported in the following subsections. 

 

(1) Running time observation 

Table 4.6 shows the running times in CPU seconds for each classifier on each data set. 

Note that we included only the testing phase for measuring the running time of each 

data set. 

 

Table 4. 6 Average running time of each classifier on each data set 

Data Set 

TCFP 

without 

context 

k-NNFP Rocchio TCFP NB SVM 

k-NN 

with 

pruning 

k-NN 

Newsgroups 0.68 0.85 0.8 1.25 1.22 14.71 37.97 142.54 

WebKB 0.13 0.23 0.14 0.55 0.17 2.72 4.91 15.25 

Reuters 2.65 2.7 3.34 2.89 7.01 39.94 15.88 65.86 

 

Since the computations depend on the vocabulary sizes, we calculated the above 

numerical values by averaging running times from 1,000 to 10,000 features. In Table 

4.6, the running time of TCFP is similar to other faster classifiers: Rocchio and Naive 

Bayes. Especially, it is about one hundred times faster than that of k-NN on the 

Newsgroups data set, and it also has much faster execution speed than SVMs. Though 

the results on each data set depend on the number of training documents and 

categories, TCFP showed fast execution speed in all the data sets. Especially, TCFP 

without contextual information is the fastest classifier in all the data sets. The time 

complexity of TCFP without contextual information is O(mc), where m is the number 

of unique words in a test document and c is the number of categories. That is, the 
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classification of TCFP without contextual information requires a simple calculation in 

proportion to the number of unique terms in the test document. On the other hand, in 

k-NN, a search in the whole training space must be done for each test document; since 

the training documents in k-NN are represented as the inverted index files in practical, 

it does not exactly search the whole training space (more than half of the whole 

training documents). Furthermore, note that TCFP without contextual information 

showed higher or similar performance than k-NN in our experiments. 

 

(2) Robustness from noisy data 

We here analyze that TCFP is more robust from noisy data than k-NN and SVMs. For 

this experiment, we generate four data sets, increasing the number of noisy documents 

from 10% to 40% in the Newsgroups data set: these noisy documents are randomly 

chosen from each category and randomly assigned into other categories. The results of 

each classifier on each noisy data set are shown in Figure 4.4. These results are also 

obtained by a five-fold cross-validation method. 
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Figure 4. 4 The classification performance of each classifier on four noisy data sets 

(10%,20%,30%,40%) 
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As shown in Figure 4.4, TCFP showed the best performance beginning at the 20% 

noisy data set, and the decreasing rate of performance of TCFP is less than that of k-

NN and SVMs. Especially, we observed that the performance of SVMs degraded 

rapidly when the number of noisy documents increased. In the actual applications of 

text categorization, it is quite common that examples in the training collection contain 

some amount of noise due to various reasons such as wrong categories assigned by 

humans and missing appropriate features. As seen in the above results, the presence of 

noisy data will affect the performance of text categorization.  

The robustness of TCFP is due to its voting mechanism. That is, the voting 

mechanism of TCFP, which depends on separate voting in each feature, reduces the 

negative effect of possible noisy data and irrelevant features in classification.  

 

4.5.3 Experimental Results in Our Method Using the Machine-labeled 

Documents Data 

In the above section, we verified that TCFP shows good performance on a data set 

with noise. This is also observed in our experiments using the machine-labeled data 

set. Here, we conduct experiments for improving our method by using TCFP and the 

machine-labeled training data from Chapter 3. All experiments of this section follow 

the same experimental setting and performance measures in Chapter 3. We also report 

the experimental results on three data sets of Chapter 3: the Newsgroups, WebKB, and 

Reuters data sets. These experiments employ four kinds of conventional classifiers to 

compare with TCFP: k-NN, Naive Bayes, Rocchio, and SVMs.  
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Here, the final results are also compared with those of the supervised Naive Bayes 

classifier. Figure 4.5 and Table 4.7 show the results from three data sets. For definition 

of notations, OurMethod(basis) denotes the Naive Bayes classifier using the machine-

labeled contexts as training data and OurMethod(NB) denotes the Naive Bayes 

classifier using the machine-labeled documents, which are generated by 

OurMethod(basis), as training data. The same manner is applied for the other 

classifiers. Results from all three data sets show that TCFP achieved the best 

performance in our method. This is another evidence for the superiority of TCFP, 

especially about robustness from noisy data. Note that, though most of the other 

classifiers showed lower or similar performance than that of basic method 

(OurMethod(basis)) on the WebKB and Reuters data sets, TCFP achieved the better 

performance in both of the data sets. 
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(a) The Newsgroups data set 
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(b) The WebKB data set 

Figure 4. 5 The comparison of the performance in our methods using each classifier 

Table 4. 7 The best micro-average F1 scores of each classifier 

Data Set 
OurMethod 

(basis) 

OurMethod 

(NB) 

OurMethod 

(Rocchio) 

OurMethod 

(k-NN) 

OurMethod 

(SVM) 

OurMethod 

(TCFP) 

Supervised 

NB 

Newsgroups 79.36 83.46 83 79.95 82.49 86.19 91.72 

WebKB 73.63 73.22 75.28 68.04 73.74 75.47 85.29 

 

Table 4. 8 The precision-recall breakeven points in the Reuters data set 

Category 
OurMethod 

(basis) 

OurMethod 

(NB) 

OurMethod 

(Rocchio) 

OurMethod 

(k-NN) 

OurMethod 

(SVM) 

OurMethod 

(TCFP) 

Supervised 

NB 

acq 94.01 94.29 89.01 88.73 95.41 94.99 96.24 

corn 62.5 55.35 64.28 51.78 53.57 64.28 66.07 

crude 80.42 84.12 77.77 75.66 84.12 79.36 89.41 

earn 96.13 96.5 96.13 97.33 96.87 96.96 97.42 

grain 74.49 65.1 79.19 47.65 38.25 67.78 92.61 

interest 77.86 77.86 68.7 77.09 82.44 80.91 77.09 

money-fx 79.32 76.53 67.03 75.97 73.74 78.21 78.21 

ship 77.52 80.89 77.52 79.77 78.65 82.02 85.39 

trade 80.5 77.11 83.89 85.59 83.89 83.05 81.35 

wheat 61.97 61.97 57.74 56.33 60.56 60.56 67.6 

micro-avg. 88.62 88.23 86.26 85.65 87.41 89.09 91.64 
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Figure 4. 6 The performance differences of the best micro-avg. F1 scores or micro-avg. 

precision-recall breakeven points in three data sets: OurMethod(basis) vs. OurMethod(TCFP) 

vs. Supervised NB 

 Table 4. 9 The performance differences of the best micro-avg. F1 scores or micro-avg. 
precision-recall breakeven points in three data sets: OurMethod(basis) vs. OurMethod(TCFP) 

vs. Supervised NB 

Data Set 
OurMethod 

(basis) 

OurMethod 

(TCFP) 

OurMethod 

(basis) 
 vs. 

OurMethod 
(TCFP) 

Supervised 

NB 

OurMethod 

(TCFP) 

 vs.  
Supervised NB 

Newsgroups 79.36 86.19 +6.83 91.72 -5.53 

WebKB 73.63 75.47 +1.84 85.29 -9.82 

Reuters 88.62 89.09 +0.47 91.64 -2.55 

 

Using TCFP, we achieved about a 6.83% advance in the Newsgroups data set, a 1.84% 

advance in the WebKB data set, and a 0.47% advance in the Reuters data set. In both 

the WebKB and Reuters data sets, our method using machine-labeled training data 

obtained lower improvement than in the Newsgroups data set. These results are 

similar to those of previous work for the EM algorithm [12]. Especially, the results of 

the WebKB data set indicate that the machine-labeled data from our method is not 

accurate enough for supervised classifiers. 

As shown in Table 4.9, we finally obtained an 86.19% micro-average F1 score in the 

Newsgroups data set, a 75.47% micro-average F1 score in the WebKB data set, and an 
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89.09% micro-average precision-recall break-even point in the Reuters data set. The 

differences between our method and the supervised Naive Bayes classifier in each data 

set are 5.53% in the Newsgroups data set, 9.82% in the WebKB data set, and 2.55% in 

the Reuters data set. Especially, the result of Reuters reached 2.55% close to the 

supervised method.  

 

4.4 Discussions 

 

Through our experiments for classifiers using machine-labeled documents, we could 

obtain an advancement of performance from 0.47% to 6.83%. The learning technique 

using the machine-labeled training data can give us flexibility to use the general 

supervised text classifiers and higher performance. Especially, we proposed a robust 

and fast classifier, TCFP. TCFP is the more proper classifier in our method, which 

must learn from training data with a lot of noisy data. Furthermore, TCFP has several 

additional advantages with respect to fast execution speed, simplicity of algorithm, 

and high performance. Therefore, TCFP can be used in areas which require a robust, 

fast, and high performance text classifier. Finally, since we use only unlabeled data 

and title words, final results using TCFP are much significant. 
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Chapter 5 

Comparing Our Method with a Clustering 

Technique 

 

 

5.1 Introduction 

 

In Chapter 2, we presented two kinds of approaches using unlabeled data in text 

categorization; one approach combines unlabeled data and labeled data, and the other 

approach uses the clustering technique for text categorization. Since our method does 

not use any human-labeled data, it cannot be fairly compared with the former 

approach. Therefore, we compare our method with a clustering technique. Slonim 

proposes a new clustering technique for unsupervised document classification and 

verifies the superiority of his algorithm in his paper [17]. He calls his clustering 

technique the sequential Information Bottleneck (sIB) algorithm. As he uses the 

corpora for text categorization such as the Newsgroups and Reuters data sets in his 

experiments, his algorithm can be applied to unsupervised document classification. In 

his evaluation, the sIB algorithm was superior to all the other clustering methods of 

his experiments: Agglomerative Information Bottleneck (AIB) algorithm [76], k-
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means [44], and Iterative Double Clustering (IDC) algorithm [77]. Therefore, we set 

the same experimental setting as that of Slonim’s experiments such as the same data 

sets and performance measures, and verify that our method outperforms his clustering 

algorithm: the sIB algorithm. 

 

5.2 Sequential Information Bottleneck Clustering Algorithm 

 

The sIB algorithm is motivated by the Information Bottleneck (IB) method. Since 

other clustering algorithms using the IB method are based on agglomerative procedure, 

they are typically computationally expensive. To solve this problem, the sIB algorithm 

casts any agglomerative procedure into a sequential clustering procedure. The sIB 

algorithm finds a partition T(X) which maximize some score function F(T) when a set 

of objects X (documents) is given. For score function F(T), the following formula is 

used [17].  

 




=

YyTt
yp

typ
typtpYTI

,
)(

)|(
log)|()();(                (5.1) 

 

where Y denotes features (words). 

The sIB algorithm starts with an initial random partition of },...,,{ 21 ktttT = of X. At 

each step, it draws some Xx  out of its current cluster t(x) and represents it as a 

new singleton cluster. Using a greedy agglomeration step, it can now merge x into tnew 

such that )},({minarg txdt FTt
new

= . By iterations of this process, it finally obtains a 

partition T(X), which constructs categories of documents. The distance metric in the 

sIB algorithm is as follows: 
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))|(),|(())()((),( typxypJStpxptxd +=               (5.2) 

 

where JS(p,q) is the Jensen-Shannon divergence [78] defined as follows: 
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The JS divergence is non-negative and is equal to zero if and only if both its 

arguments are identical. 

The Pseudo-code for the sIB algorithm is as follows [17]: 

Input: |X| objects to be clustered, Parameters: K, n, maxL,  
 

Output: A partition T of X into K clusters 

 

Main Loop: 

 

For i = 1,…,n 

   Ti is a random partition of X. 

   c=0, C=0, done = FALSE 

   While not done 

      For j =1,…,|X| 

         Draw xj out of t(xj) 

         )},({minarg)( '
' txdxt

jFtj

new =  

If  )()(
jj

new xtxt   then c = c+1 

Merge xj into tnew(xj) 

         C=C+1 

         If C  maxL or c  |X| then 

             Done = TRUE 

 

   T  argmaxTi F(Ti) 
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5.3 Empirical Evaluation 

 

5.3.1 Data sets and Experimental Setting 

For these experiments, we follow the same experimental setting as those of Slonim’s 

paper [17]. We do experiments using two data sets in his medium-scale experiments, 

Newsgroups and Reuters 21578; they are the most meaningful data sets in hand. These 

data sets are revised in the same way according to Slonim’s paper as follows: 

In the Newsgroups data set, the categories are united with respect to 10 meta-

categories: five comp categories, three politics categories, two sports categories, three 

religions categories, and the two transportation categories into 5 big meta-categories. 

The vocabulary from this data set has 59,130 words. 

As a next test data set, we use the 10 most frequent categories in the Reuters 21578 

data set under the ‘ModApte’ without the train/test split. The size of vocabulary is 

12,925 words. 

Slonim, in his experiments, used only the documents with more than 10 features 

after feature selection. But it is a great difficult task to obtain the same data set due to 

his feature selection. Thus, we preferably use the entire documents of each data set 

without removing them. These experiments are conducted as a close test. That is, all 

the documents are used as training data and test data. 

As our evaluation measures, we use the micro-average precision which is described 

in Chapter 3.  
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5.3.2 Experimental Results 

 

In the experimental results, the performance values of the sIB algorithm are taken 

from [17]. We achieved a 6.65% improvement in a revised Newsgroups data set and a 

3.2 % improvement in a revised Reuters data set. 

 

A. Results from the Revised Newsgroups Data Set 

In the revised Newsgroups data set, our method is superior to sIB. Our method with 

the TCFP classifier attained an 86.15% micro-average precision score. In this 

experiment, we used a title word and two keywords as input words of each category. 
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Figure 5. 1 The performance of our method according to the number of features              
in the revised Newsgroups data set 

Table 5. 1 The best micro-avg. precision scores of aIB algorithm and our method            
in the revised Newsgroup data set 

 sIB 
OurMethod 

(TCFP) 
Improvement 

Best micro-avg. 

precision 
79.5 86.15 +6.65 
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B. Results from the Revised Reuters Data Set 

Our method with TCFP obtained an 89% micro-average precision score. In this 

experiment, we used a title word and five keywords as input words of each category. 
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Figure 5. 2 The performance of our method according to the number of features              
in the revised Reuters data set 

Table 5. 2 The best micro-avg. precision scores of aIB algorithm and our method           
in the revised Reuters data set 

 sIB 
OurMethod 

(TCFP) 
Improvement 

Best micro-avg. 

precision 
85.8 89 +3.2 

 

 

5.4 Discussions 

 

Our experimental results show that our method is superior to sIB algorithm with 

regard to performance. Our improvement reported 3.2% on the revised Reuters data 
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set and 6.65% on the revised Newsgroups data set, and it can be regarded as the 

significant advance. Moreover, Slonim verified that the sIB algorithm outperforms 

other clustering algorithms: various kinds of K-means algorithms and Iterative Double 

Clustering algorithm [17]. Therefore, we can regard that our method is superior to 

other clustering algorithms indirectly. 

Compared to clustering algorithms, our method has additional strong points as well 

as high performance. Most clustering algorithms including the sIB algorithm have the 

local maximum problem. To solve this problem, they need to find a global maximum 

through a repetitive procedure. However, since our method does not have a local 

maximum problem, it does not require a repetitive procedure. Therefore, we can save 

processing time in our method. In addition, when a clustering algorithm is applied to 

text categorization for unlabeled documents, it needs to assign a category label to a 

cluster. For this, we must assign the most dominant category label of a cluster to all 

documents of that cluster. That is, we need to look into the content of documents in 

each cluster after all. However, results of our method are the set of automatically 

labeled documents. 

This chapter has addressed that our method is superior to clustering methods in 

many ways. Especially, our method outperforms clustering methods with regard to the 

performance.  
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Chapter 6 

Enhancing Our Method and More Experiments 

 

 

 

The main problem of our method is that its performance depends on the quality of the 

keywords and title words. As we have seen in the previous chapter, we obtained the 

worst performance in the WebKB data set. In fact, keywords of each category in the 

WebKB data set also have high frequency in other categories. Worst of all, even the 

title words (course, professor, student, and project) show a confused usage. We think 

these factors contribute to a comparatively poor performance of our method. As in the 

case of WebKB, the ambiguous title words and keywords can raise bad performance. 

If keywords as well as title words are supplied by humans, our method may achieve 

higher performance. However, choosing the proper keywords for each category is a 

much difficult task; it must be more difficult on application domains unknown to 

developers. Moreover, keywords from a developer, who has insufficient knowledge 

about an application domain, do not guarantee high performance. In order to overcome 

this problem, we propose a hybrid method for choosing keywords. That is, a developer 

obtains 10 candidate keywords from our keyword extraction method and then he can 

choose proper keywords from them.  
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In this section, we revisit the problem associated with providing a sufficient number 

of labeled training examples that arises in many supervised learning tasks. In other 

words, for the successful application of supervised learning to solving classification 

tasks, it is assumed that there is a sufficient amount of labeled data. To assign a 

category label to an example, a human has to peruse this document first. Obviously, 

this human-labeling of documents is not only error prone but also a tedious and time-

consuming task. Consequently, provision of labeled data requires expensive human 

resources, making it the bottleneck in the supervised learning setting. The severity of 

this problem can only be understood when we realize how large a training set must be 

in order to achieve reasonable results. Therefore, it is crucial to know just when a 

training set may be deemed large enough. It is known from computational learning 

theory that, usually, the number of training examples should be at least a multiple of 

the number of features if reasonable results are to be guaranteed [79]. This theory may 

give some insight as to what is learnable and can provide worst-case bounds on the 

number of training examples required. However, for practical problems, we generally 

have to find out empirically how large the training set should be. Since the high 

dimensional feature space is used to represent text, providing as many training 

examples as theoretical considerations is generally not possible in text domains. 

Moreover, another question is how many labeled documents are required to obtain the 

same performance as that of our method in each data set. Therefore, we report the 

classification performance of the Naive Bayes classifier when varying the number of 

training documents on each data set. 
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6.1 Results of Choosing Keywords by Hand Supported by Our 

Method 

 

Here, we show the results from a new method for choosing keywords; a developer 

obtains 10 candidate keywords from our keywords extraction method and selects 

proper keywords among them. Figure 6.1 and Table 6.1 show the results from three 

data sets. For definition of notations in this section, Enhancing(TCFP) denotes the 

TCFP classifier using keywords selected from the new method. 
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(a) The Newsgroups data set 
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(b) The WebKB data set 

Figure 6. 1 The comparison of enhancing method and previous our method 

Table 6. 1 The best micro-average F1 scores of each method 

Data Set 
OurMethod 

(basis) 

Enhancing 

(basis) 

OurMethod 

(TCFP) 

Enhancing 

(TCFP) 

Supervised 

NB 

Newsgroups 79.36 79.95 86.19 86.23 91.72 

WebKB 73.63 76.97 75.47 77.59 85.29 

 

Table 6. 2 The precision-recall breakeven points in the Reuters data set 

Category 
OurMethod 

(basis) 

Enhancing 

(basis) 

OurMethod 

(TCFP) 

Enhancing 

(TCFP) 

Supervised 

NB 

acq 94.01 92.62 94.99 94.15 96.24 

corn 62.5 64.28 64.28 67.85 66.07 

crude 80.42 81.48 79.36 76.71 89.41 

earn 96.13 95.95 96.96 97.05 97.42 

grain 74.49 76.51 67.78 75.83 92.61 

interest 77.86 78.62 80.91 80.91 77.09 

money-fx 79.32 80.44 78.21 77.65 78.21 

ship 77.52 84.26 82.02 82.02 85.39 

trade 80.5 82.2 83.05 85.59 81.35 

wheat 61.97 63.38 60.56 69.01 67.6 

micro-avg. 88.62 88.84 89.09 89.52 91.64 
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Figure 6. 2 The performance differences of the best micro-avg. F1 scores or micro-avg. 
precision-recall breakeven points in three data sets 

 

Table 6. 3 The performance differences of the best micro-avg. F1 scores or micro-avg. 
precision-recall breakeven points in three data sets 

Data Set 
OurMethod 

(TCFP) 

Enhancing 

(TCFP) 

OurMethod 

(TCFP) 
 vs. Enhancing 

(TCFP) 

Supervised 

NB 

OurMethod 

(TCFP) 
 vs.  

Supervised NB 

Newsgroups 86.19 86.23 +0.04 91.72 -5.49 

WebKB 75.47 77.59 +2.12 85.29 -7.7 

Reuters 89.09 89.52 +0.43 91.64 -2.12 

 

As shown in Table 6.3, we obtained about a 0.04% advance in the Newsgroups data 

set, a 2.12% advance in the WebKB data set, and a 0.43% advance in the Reuters data 

set. Especially, we could achieve high improvement in the WebKB data set, which 

showed the worst performance in the previous chapter. Thus, we find that the new 

method for choosing keywords is more useful in a domain with confused keywords 

between categories such as WebKB. We believe the new method is more suitable to a 

real application area than choosing top n-th keywords. 
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6.2 The Effect of Learning from Small Training Data 

 

Figure 6.3 shows the classification performance of the supervised Naive Bayes 

classifier on the three data sets selected when the number of labeled training 

documents is varied. The horizontal axes indicate the number of labeled training 

documents. Note that, for example, a total of 16 training documents for the 

Newsgroups data set corresponds to one document per category and, for the Reuters 

data set, a total of 10 training documents correspond to one document per category. 

The vertical axes indicate the classification performance on the test sets.  

Notice that the achieved performances vary greatly across the different data sets and 

different amounts of labeled data. A reason for this lies not only in the separateness of 

categories but also in the number of categories. Generally, the more labeled data there 

is, the better the performance is achieved. In particular, additional examples yield 

substantial improvements in classification performance when training data is scarce. 

In contrast, only marginal improvements are gained through providing additional 

training examples when many training examples are available already. For each data 

set examined, the learning curves begin to converge to a certain dataset-specific level 

when the training sets contain some hundred examples per category.  

As shown in Figure 6.3, for the Newsgroups data set, we achieved similar 

performance to that of our method using about 3,500 labeled training documents: 

about 600 labeled documents for the WebKB data set and about 5,000 labeled 

documents for the Reuters data set. Although these training set sizes are smaller than 

the whole training set size, labeling some thousand documents for training is still a 

tedious and time-consuming task.  



 92 

0

10

20

30

40

50

60

70

80

90

100

16 32 96 192 496 992 2000 2992 3488 4000 12800

The number of labeled training documents

M
ic

ro
-
a
vg

.F
1

Supervised NB OurMethod

 

(a) The Newsgroups data set 
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(b) The WebKB data set 
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(C) The Reuters data set 

Figure 6. 3 The effect of the training set size on the classification performance of a supervised 

Naive Bayes classifier in each data set and the comparison with the performance of our method. 

The horizontal axes indicate the number of labeled training documents.  
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6.3 Discussions 

 

This section has showed that we could improve our method as choosing keywords by 

hand from candidate keywords provided by our keywords extraction method. 

Especially, in the WebKB data set with confused categories, higher improvement was 

gained. Although this new method needs more manpower, we think it is a better 

method for real application areas.  

The experimental results for the effect of learning from small training data show 

that the performance curve is converged when using some hundred labeled training 

documents per each category and human-labeling tasks for some thousand documents 

are required to obtain the similar performance to our method. Moreover, as the 

previous work in [13] reports that labeling 400 documents took about six hours, 

human-labeling tasks for training data must be tedious and time-consuming. Therefore, 

our method can help text categorization tasks more tractable by solving the bottleneck 

of supervised approaches for them.  
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Chapter 7 

Conclusions and Future Work 

 

 

 

This dissertation has addressed a new unsupervised or semi-unsupervised text 

categorization method. Though this method uses only title words for categories and 

unlabeled documents, it shows significant performance in comparison with that of a 

supervised Naive Bayes classifier. Labeled data are expensive to collect because a 

person must take the time and effort to label them while unlabeled data are often 

inexpensive and plentiful. This is especially true for text classification tasks where 

almost any type of text is readily available in electronic form. 

 

 

7.1 Conclusions 

 

From studies and experiments in this thesis, we draw the following significant 

conclusions. 
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(1) An automatic text classifier can be built from unlabeled data 

 

Although our method uses only title words for categories and unlabeled data, it can 

create an automatic text classifier. By a bootstrapping technique in Chapter 3, it finally 

creates machine-labeled training contexts for a generative model, the Naive Bayes 

classifier, which learns from them and classifies documents to build machine-labeled 

training documents. Moreover, using the machine-labeled training documents, other 

supervised classifiers, which require training data of a document unit, can be used in 

our method. Using the TCFP classifier among them, we finally achieved an 86.19% 

micro-average F1 score in the Newsgroups data set, a 75.47% micro-average F1 score 

in the WebKB data set, and an 89.09% micro-average precision-recall breakeven point 

in the Reuters data set. Especially, results of the Reuters data set reached as close as 

2.55% to the supervised method. Moreover, using the new keyword selection method 

to enhance our method, we could achieve better performance in all the data sets: 

86.23% in the Newsgroups data set, 77.59% in the WebKB data set, and 89.52% in the 

Reuters data set. Especially, we could obtain high improvement, 2.12%, in the WebKB 

data set. These results can be considered as a significant performance.  

 

(2) The TCFP classifier has robustness from noisy data, fast execution speed, 
and high performance 

 

In this thesis, a new type of text classifier, TCFP, has been proposed. The experimental 

results show that TCFP has high performance and fast execution speed. Above all, 

robustness of TCFP from noisy data makes it a more proper classifier in our method 

because the machine-labeled training data has many incorrectly labeled documents. 

Especially, TCFP achieved the best performance in our method. Furthermore, by the 
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simplicity of the TCFP algorithm, its implementation and training process can be done 

very easily. Therefore, we can use TCFP in application areas which require a robust, 

fast, and high performance text classifier. 

 

(3) Our method is superior to clustering methods 

 

Compared to the sIB clustering algorithm in Chapter 5, our method outperforms 

clustering algorithms. Our method achieved a 3.2% advance on the Reuters data set 

and a 6.65% advance in the Newsgroups data set from our experiments and it can be 

regarded as significant advance. In addition, our method is also superior to clustering 

methods in several ways such as processing time and local maximum problems.  

 

(4) Our method can be applied to low-cost text categorization and creation of 
training data 

 

Because labeled data are expensive while unlabeled data are inexpensive and plentiful, 

we can readily build a text classifier using our method. Therefore, our method is 

useful for low-cost text categorization. However, if some text categorization tasks 

require high accuracy, our method is also used as an assistant tool for easily creating 

training data. Besides, we believe that there are many application areas for our method. 
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7.2 Future Work 

 

This thesis suggests several future work that deserve attention.  

 

⚫ First of all, the performance of our method depends on title words and the 

input keywords. Thus, we need additional experiments and discussions about 

these factors. We need to study the characteristics of candidate words for title 

words and suggest the criterion for choosing title words. In addition, we have 

to develop an improved keyword extraction method. 

⚫ In Chapter 3, we proposed the bootstrapping method from title words to  

machine-labeled documents. Although our bootstrapping method achieved a 

significant performance in our experiments, there is still potential to improve 

the bootstrapping method for high classification performance. 

⚫ In Chapter 4, we presented the TCFP classifier and it achieved the best 

performance in our method. However, it still shows a little lower 

performance than SVM in using the human-labeled data. Therefore, to 

improve the TCFP classifier, we should study more characteristics of the 

feature projection technique and the feature weighting technique for TCFP. 
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Appendix 

Lists of Title Words and Keywords for Each Data 

Set 

 

This appendix presents the entire lists of title words and keywords for each data set. 

 

Table A. 1 The list of keywords for each category in five folds of the Newsgroups data set 

Category Title Word fold Keywords 

alt.atheism atheism 

1-th atheists, theism 

2-th atheist, atheists 

3-th theism, atheists 

4-th atheists, non-existence 

5-th atheist, atheists 

comp.graphics graphics 

1-th vesa, wate 

2-th vesa, wate 

3-th m13, gems 

4-th herringshaw, vesa 

5-th vesa, m13 

comp.sys.mac.hardware mac 

1-th apple, iisi 

2-th apple, quadra 

3-th apple, quadra 

4-th apple, quadra 

5-th apple, quadra 

comp.windows.x xwindows 

1-th postscript, x11r4 

2-th script, x11r4 

3-th x11r4, postscript 

4-th toolkit, clone 

5-th script, Athena 

misc.forsale for sale 

1-th offer, condition 

2-th offer, sale 

3-th offer, sale 

4-th offer, condition 

5-th offer, condition 

rec.autos auto 

1-th freon, cars 

2-th bigots, freon 

3-th cars, bigots 

4-th bigots, freon 

5-th cars, freon 
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rec.motorcycles motorcycle 

1-th wheelie, bike 

2-th wheelie, shaft-drives 

3-th wheelie, shaft-drives 

4-th wheelie, shaft-drives 

5-th wheelie, shaft-drives 

rec.sport.baseball baseball 

1-th players, pitcher 

2-th pitcher, bat 

3-th players, pitcher 

4-th pitcher, bat 

5-th pitcher, players 

rec.sport.hockey hockey 

1-th nhl, cup 

2-th nhl, ice 

3-th nhl, cup 

4-th nhl, cup 

5-th nhl, cup 

sci.crypt cryptography 

1-th lobbying, organized 

2-th encryption, lobbying 

3-th lobbying, encryption 

4-th lobbying, encyption 

5-th encryption, lobbying 

sci.electronics electronics 

1-th delco, kokomo 

2-th delco, kokomo 

3-th stramer, lookout 

4-th stramer, lookout 

5-th hugo, intergraph 

sci.med medicine 

1-th osteopathic, gilbert 

2-th osteopathic, vms.ocom.okstate.edu 

3-th osteopathic, patients 

4-th osteopathic, news@osuunx.ucc.okstate,edu 

5-th osteopathic, patients 

sci.space space 

1-th nasa, shuttle 

2-th nasa, shuttle 

3-th nasa, shuttle 

4-th nasa, shuttle 

5-th nasa, shuttle 

soc.religion.christian christian 

1-th morality, christianity 

2-th christianity, morality 

3-th christianity, morality 

4-th christianity, morality 

5-th christianity, morality 

talk.politics.guns gun 

1-th firearms, weapons 

2-th firearms, weapons 

3-th firearms, weapons 

4-th firearms, weapons 

5-th firearms, weapons 

talk.politics.mideast mideast 

1-th political, shaw 

2-th ahmad, kathleen 

3-th kathleen, political 

4-th ahmad, shaw 

5-th political, kathleen 
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Table A. 2 The list of keywords for each category in five folds of the WebKB data set 

Category Title Word fold Keywords 

course course 

1-th assignments, hours, instructor, class, fall 

2-th instructor, hours, assignments, class, fall 

3-th instructor, hours, assignments, class, fall 

4-th 
hours, assignments, instructor, class, 

instruction 

5-th hours, instructor, assignments, class, fall 

faculty professor 

1-th associate, ph.d, fax, interests, publications 

2-th associate, ph.d, fax, interests, publications 

3-th associate, ph.d, fax, interests, publications 

4-th associate, ph.d, interests, fax, publications 

5-th associate, ph.d, fax, interests, publications 

project project 

1-th 
system, systems, research, software, 

information 

2-th 
system, systems, software, research, 

information 

3-th system, systems, research, software, group 

4-th system, systems, research, software, group 

5-th system, systems, research, software, design 

student student 

1-th graduate, computer, science, page, university 

2-th graduate, computer, science, page, home 

3-th graduate, computer, science, page, home 

4-th graduate, computer, science, page, home 

5-th graduate, computer, science, page, home 

 

 

Table A. 3 The list of keywords for each category in the Reuters data set 

Category Title Word Keywords 

acq Acquisition, merger inc, shares, shareholders 

corn corn bushel, soybeans, bushels 

crude Crude oil bpd, barrels, barrel 

earn earnings quarter, share, results 

grain grain usda, harvest, crop 

interest interest rate rates, rate, money 

money-fx foreign exchange currency, intervention, dollar 

ship shipping missiles, chinese-made, silkworm 

trade trade tariffs, surplus, countries 

wheat wheat tones, agriculture, enhancement 
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Table A. 4 The list of keywords for each category of the revised Newsgroups data set in 
Chapter 5 (10 categories) 

Category Title Word Keywords 

religion religion, atheism, christian god, morality 

computer 
graphics, mac, hardware, x-windows, 

ms-windows 
software, apple 

forsale for sale offer, condition 

vehicle auto, motorcycle wheelie, cars 

sport baseball, hockey game, players 

crypt cryptography lobbying, encryption 

electronics electronics delco, kokomo 

medicine medicine osteopathic, patients 

space space nasa, shuttle 

politics politics, gun, mideast firearms, weapons 

 

 

Table A. 5 The list of keywords for each category of the revised Reuters data set        
in Chapter 5 

Category Title Word Keywords 

acq acquisition, merger inc, shares, shareholders 

corn corn soybeans, bushel, soybean 

crude crude oil bpd, barrels, barrel 

earn earnings quarter, revenues, share 

grain grain harvest, crop, elevator 

interest interest rate rates, rate, money 

money-fx foreign exchange currency, dollar, intervention 

ship shipping missiles, silkworm, ships 

trade trade tariffs, deficit, exports 

wheat wheat tonnes, agriculture, winter 
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Table A. 6 The list of keywords for each category in five folds of the Newsgroups data set in 
Chapter 6. These keywords were selected by the new keyword extraction method. 

Category Title Word fold Keywords 

alt.atheism atheism 

1-th 
atheists, theism, atheist, theists, mozumder, bake, 

timmons 

2-th atheist, atheists, theism, theists, mozumder, theist 

3-th theism, atheists, mozumder, atheist, theists, s.n, theist 

4-th atheists, atheist, theism, theists, mozumder 

5-th atheist, atheists, theism, theists, mozumder, s.n, theist 

comp.graphics graphics 

1-th vesa, wate, vga, animation, pixel, image 

2-th vesa, wate, herringshaw, vga, pixel 

3-th vesa, tmc, wate, vga, jpeg 

4-th herringshaw, vesa, wate, eisa, vga, pixel 

5-th vesa, vga, herringshaw, wate, animation 

comp.sys.mac.hardware mac 

1-th apple, iisi, quadra, nubus, scsi, powerbook 

2-th apple, quadra, iisi, nubus, scsi, powerbook 

3-th apple, quadra, iisi, scsi, powerbook, nubus, iifx 

4-th apple, quadra, iisi, scsi, powerbook, nubus, iici 

5-th apple, quadra, iisi, scsi, nubus, powerbook 

comp.windows.x xwindows 

1-th postscript, x11r4, x11, xhost 

2-th script, x11r4, xhost, x11, postscript 

3-th x11r4, postscript, x11, xview 

4-th x11r4, postscropt, ncsa 

5-th script, athena, x11r4, xhost, postscript, x11 

misc.forsale for sale 

1-th offer, postage, cod, shipping, offers 

2-th offer, obo, postage, cod, offers, shipping 

3-th offer, postage, obo, packaging, cod, kou 

4-th offer, cod, obo, postage, shipping 

5-th offer, obo, cod, offers, do-it-yourselers 

rec.autos auto 

1-th freon, cars, car, transmissions, sedans 

2-th freon, cars, car, transmissions 

3-th cars, car, lh, drivers, porsche 

4-th freon, cars, car, camry 

5-th cars, freon, car, transmissions 

rec.motorcycles motorcycle 

1-th 
wheelie, bike, dod, shaft-drives, wheelies, bikes, 

countersteering_faq, motorcyclist 

2-th 
wheelie, shaft-drives, bike, wheelies, dod, bikes, 

countersteering_faq, handlebars 

3-th 
wheeli, shaft-drives, wheelies, bike, dod, bikes, riders, 

suzuki 

4-th 
wheeli, shaft-drives, wheelies, dod, bike, 

countersteering_faq, bikes, Suzuki, handlebars 

5-th 
wheelie, shaft-drives, wheelies, dod, bike, bikes, 

countersteering_faq, motorcyclist 

rec.sport.baseball baseball 

1-th pitcher, bat, nl, koufax, lowenstein, braves, mets, lustig 

2-th pitcher, bat, braves, hitter, reardon, inning mets, pitchers 

3-th pitcher, lowenstein, koufax, stankowitz, bat, pitchers 

4-th pitcher, bat, nl, hitter, lowenstein, stankowitz, koufax 

5-th 
pitcher, nl, braves, clemens, mets, bat, lowenstein, 

loufax, stankowitz 

rec.sport.hockey hockey 
1-th nhl, cup, ahl, ice, ecac, farenell, adirondack, glens 

2-th nhl, ice, cup, devils, leafs, staffan, axelsson 
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3-th nhl, cup, devils, ice, bruins, adirondack, farenell, ecac 

4-th nhl, cup, devils, ahl, adirondack, ice, ecac, farenell 

5-th nhl, cup, devils, ahl, ice, adirondack, ecac, farenell, leafs 

sci.crypt cryptography 

1-th encryption, cryptographic 

2-th encryption, sci.crypt 

3-th encryption, cryptosystem, sci.crypt 

4-th encryption, sci.crypt 

5-th encryption, sci.crypt, pem 

sci.electronics electronics 

1-th 
delco, kokomo, triantafyllopoulos, spiros, circuit, 

intergraph, gandler, hitachi, resistors 

2-th 
delco, kokomo, spiros, triantafyllopoulos, Intergraph, 

circuit 

3-th 
stramer, intergraph, circuit, waveform, hitachi, 

resistances 

4-th intergraph, waveform, circuit, hitachi, haddy 

5-th 
hugo, intergraph, wolfgang, circuit, gandler, resistances, 

connectors 

sci.med medicine 

1-th 
osteopathic, gilbert, patients, nutrition, disease, 

treatments, physicians 

2-th osteopathic, patients, disease, physicians, patient 

3-th 
osteopathic, patients, nutrition, gilbert, physicians, 

disease 

4-th 
osteopathic, patients, disease, nutrition, gilbert, anti-

fungals 

5-th 
osteopathic, patients, nutrition, disease, gilbert, patient, 

physician 

sci.space space 

1-th nasa, shuttle, launch, orbit, moon, astronomy, telescope 

2-th nasa, shuttle, launch, orbit, moon, astronomy, spacecraft 

3-th nasa, shuttle, launch, telescope, moon, orbit, astronomy 

4-th nasa, shuttle, launch, orbit, moon, telescope, spacecraft 

5-th nasa, shuttle, launch, orbit, astronomy, moon, telescope 

soc.religion.christian christian 

1-th christianity, jesus, christ, bible 

2-th christianity, jesus, christ, bible, scripture 

3-th christianity, christ, jesus, bible, scripture 

4-th christianity, christ, jesus, bible 

5-th christianity, jesus, christ, bible, scripture 

talk.politics.guns gun 

1-th firearms, weapons, firearm, handgun, handguns, weapon 

2-th firearms, weapons, handgun, handguns, firearm weapon 

3-th 
firearms, weapons, firearm, handgun, handguns, arms, 

weapon 

4-th firearms, weapons, handgun, handguns, firearm, weapon 

5-th firearms, weapons, firearm, handgun, handguns, weapon 

talk.politics.mideast mideast 

1-th 
shaw, kathleen, ahmad, avetis, muratoff, sept, israel, 

bortnick 

2-th ahmad, kathleen, shaw, sept, avetis, arab, Israel, arabs 

3-th 
kathleen, avetis, ahmad, shaw, muratoff, arab, rawlinson, 

sept, mccarthy 

4-th 
ahmad, shaw, kathleen, sept, brigham, davidsson, 

macmillan, arabs, arab 

5-th 
kathleen, ahmad, shaw, elias, sept, davidsson, palestine, 

invader, yitzhak 
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Table A. 7 The list of keywords for each category in five folds of the WebKB data set in 
Chapter 6. These keywords were selected by the new keyword extraction method. 

Category Title Word fold Keywords 

course course 

1-th 
assignments, hours, instructor, class, exam, 

lecture, homework, syllabus 

2-th 
instructor, hours, assignments, class, lecture, 

homework, exam, syllabus 

3-th 
instructor, hours, assignments, class, lecture, 

exam, homework, notes 

4-th 
hours, assignments, instructor, class, lecture, 

exam, notes, syllabus 

5-th 
hours, instructor, assignments class, lecture, 

syllabus, notes, homework 

faculty professor 

1-th associate, fax, ieee, fellow, assistant 

2-th associate, fax, assistant, journal, award 

3-th associate, fax, fellow, assistant, journal, ieee 

4-th associate, fax, assistant, journal, fellow, award 

5-th associate, fax, ieee, fellow, journal, assistant 

project project 

1-th performance, tools 

2-th performance 

3-th performance 

4-th performance 

5-th performance 

student student 

1-th graduate, home, links, grad 

2-th graduate, home, links, grad 

3-th graduate, home, links, grad 

4-th graduate, home, links, grad 

5-th graduate, home, grad, links 

 

Table A. 8 The list of keywords for each category in the Reuters data set in Chapter 6. These 
keywords were selected by the new keyword extraction method. 

Category Title Word Keywords 

acq acquisition, merger inc, shares, shareholders 

corn corn bushel, soybeans, bushels, soybean 

crude crude oil bpd, barrels, barrel, petroleum, opec, gasoline 

earn earnings quarter, revenues, income, profits 

grain grain usda, harvest, maize, buenos, aires, argentine 

interest interest rate lending, bonds, inflation, banks, bundesbank 

money-fx foreign exchange currency, intervention, dollar, dollars, auction, yen 

ship shipping 
missiles, chinese-made, silkworm, tehran, missile, 

iran, ships, vessel 

trade trade tariffs, surplus 

wheat wheat tones, winter, barley, flour 
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