

Contents 1. What Does it Mean to Learn? 2. Some Canonical Learning Problems 3. The Decision Tree Model of Learning 4. Formalizing the Learning Problem 5. Inductive Bias: What We Know Before the Data Arrives 6. Not Everything is Learnable 7. Underfitting and Overfitting 8. Separation of Training and Test Data 9. Models, Parameters and Hyperparameters

Canonical Learning Problems ❖ Regression: trying to predict a real value ➤ predict the value of a stock tomorrow given its past performance ❖ Binary Classification: trying to predict a simple yes/no response ➤ predict whether Alice will enjoy a course or not ❖ Multiclass Classification: trying to put an example into one of a number of classes ➤ predict whether a news story is about entertainment, sports, politics, religion ❖ Ranking: trying to put a set of objects in order of relevance ➤ predicting what order to put web pages in, in response to a user query ISLAB

Formalizing the Learning Problem

- there are several issues when formalizing the notion of learning
 - > The performance of the learning algorithm should be measured on unseen "test" data
 - > The way in which we measure performance should depend on the problem we are trying to solve
 - There should be a strong relationship between the data that our algorithm sees at training time and the data it sees at test time
- loss function
 - to tell us how "bad" a system's prediction is in comparison to the truth. In particular
 - > if y is the truth and \hat{y} is the system's prediction, then $\ell(y, \hat{y})$ is a measure of error.

B DONG-A UNIVERSITY

19 / 29

ISLAB

Decision Tree Test

Algorithm 2 DECISIONTREETEST(tree, test point)

- if tree is of the form Leaf(guess) then
- 2: return guess
- 3: else if tree is of the form Node(f, left, right) then
- if f = yes in test point then
- return DecisionTreeTest(left, test point)
- else
- return DecisionTreeTest(right, test point)
- s end if
- e end if

18 / 29

ISLAB

Formalizing the Learning Problem

 For three of the canonical tasks discussed above, we might use the following loss functions

Regression: squared loss $\ell(y, \hat{y}) = (y - \hat{y})^2$ or absolute loss $\ell(y, \hat{y}) = |y - \hat{y}|$.

Binary Classification: **zero/one loss** $\ell(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{otherwis} \end{cases}$

Multiclass Classification: also zero/one loss.

- Note that the loss function is something that you must decide on based on the goals of learning
- Now that we have defined our loss function, we need to consider where the data comes from

DONG-A UNIVERSITY

20 / 29

Formalizing the Learning Problem

- ❖ There is a probability distribution *D* over input/output pairs
 - > This is often called the data generating distribution
 - \triangleright If we write x for the input and y for the output, then D is a distribution over (x, y) pairs
- * Formally, it's **expected loss** ϵ over D with respect to ℓ should be as small as possible
 - > we don't know what D is!

$$\epsilon \triangleq \mathbb{E}_{(x,y) \sim \mathcal{D}} \big[\ell(y,f(x)) \big] = \sum_{(x,y)} \mathcal{D}(x,y) \ell(y,f(x))$$

B DONG-A UNIVERSITY

21 / 29

ISLAB

Inductive Bias

* What we know before the data arrives

Preference type A

Preference type B

- Preference for one distinction over another is a bias that different human learners have
- inductive bias: in the absence of data that narrow down the relevant concept

B DONG-A UNIVERSITY

23 / 29

ISLAB

Formalizing the Learning Problem

- Suppose that we denote our training data set by D
 - The training data consists of N-many input/output pairs, $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$
 - \triangleright Given a learned function f, we can compute our **training error**

$$\hat{\epsilon} \triangleq \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

- our training error is simply our average error over the training data
- ❖ Given a loss function ℓ and a sample D from some unknown distribution D, you must compute a function f that has low expected error ϵ over D with respect to ℓ

👸 DONG-A UNIVERSITY

22 / 29

ISLAB

Inductive Bias

- We will not allow the trees to grow beyond some predefined maximum depth, d
 - ➤ That is, once we have queried on d-many features, we cannot query on any more and must just make the best guess we can at that point
- The key question is: What is the inductive bias of shallow decision trees?
 - Roughly, their bias is that decisions can be made by only looking at a small number of features

DONG-A UNIVERSITY

24 / 29

Not Everything is Learnable

- There are many reasons why a machine learning algorithm might fail on some learning task
- * There could be noise in the training data
 - > Noise can occur both at the feature level and at the label level
- Some example may not have a single correct answer
- In the inductive bias case, it is the particular learning algorithm that you are using that cannot cope with the data

DONG-A UNIVERSITY

25 / 29

ISLAB

Separation of Training and Test Data

- The easiest approach is to set aside some of your available data as "test data" and use this to evaluate the performance of your learning algorithm.
- If you have collected 1000 examples, You will select 800 of these as training data and set aside the final 200 as test data.
- Occasionally people use a 90/10 split instead, especially if they have a lot of data
- * They cardinal rule of machine learning is:

Never ever touch your test data!

B DONG-A UNIVERSITY

27 / 29

ISLAB

Overfitting and Underfitting

- Overfitting is when you pay too much attention to idiosyncracies of the training data, and aren't able to generalize well
- Underfitting is when you had the opportunity to learn something but didn't.

> This is also what the empty tree does

Models, Parameters and Hyperparameters

- The general approach to machine learning, which captures many existing learning algorithms, is the modeling approach
- For most models, there will be associated parameters
- Hyperparameter: we can adjust between underfitting and overfitting by the DecisionTreeTrain function so that it stop recursing
 - choosing hyperparameters: choose them so that they minimize training error
- The job of the development data is to allow us to tune hyperparameters

DONG-A UNIVERSITY

28 / 29

ISLAB

Development Data

- ❖ Some people call this "validation data" or "held-out data."
- Split your data into 70% training data, 10% development data and 20% test data
- For each possible setting of your hyperparameters
 - > Train a model using that setting of hyperparameters on the training data
 - ➤ Compute this model's error rate on the development data
- From the above collection of models, choose the one that achieved the lowest error rate on development data
- Evaluate that model on the test data to estimate future test performance.

29 / 29