_‘7

Introduction of Perceptron
in Python

-

Ko, Youngjoong

Dept. of Computer Engineering,
Dong-A University

1.

Basic Concepts

. Bio-inspired Perceptron

. Structure and Computation
. Learning

. Geometric Interpretation

. Limitations of perceptron

. Python Code and Practice

2

Basic Concepts of Perceptron

* lllustration Example (Apple Tree)

Size
il

Datapoints .

Re gression - ‘
3) e
2
1
0 ! §

10 20 30 40 50

Day

of 24 7 E=2 A2 37[& 573, 7|&”

- "O{tH AFZHLERO] CH3HA 'aﬁ £ H

L=
- SRE8F 371V 52 U A0 M-S LG E 5 ALY 2 1

—

3

Basic Concepts of Perceptron

* lllustration Example (Apple Tree)

If size > 30, sell an apple!

Default
size =5 size =10 size = 15 size =20 size =25 J
1
| .)
I
|
|
- 1
<4 |
=g —= !
N /N :
| | \ 1
NS — !
1; >
Day 0 Day 10 Day 20 Day 20 Ciay 40 i
1
|
1

dE 1A ETA| Of ArRtLt 2= 2o A2 2 At S01 & SR
= AR 27(7k300] §e®H & 5

Question : 26| Day-50 0| AFFE ZF = QI 277}

Datapoints
Regression

Very Typical Regression Problem

rJ3

Basic Concepts of Perceptron

* lllustration Example (Apple Tree)

if size > 30, sell an apple!

Default
size=5 size = 10 size =15 size = 20 size =25 J l ’
- i
I}?-i-,,\l (” |
\\. i _/I A _ i
Day 0 Day 10 Day 20 D=y 30 Cay 40 i
A
30 _ |
yv=ax—+bh |
25 '
___ |
o * 4 !
o Size = 0.5%day +5 |
15 —]
P Activation peint to sell an apple’
e =
| | | | | .
[[| | | "
10 20 30 40 L]
Regression

— learn the parameter ‘@’ and ‘b’ from the data

5

Basic Concepts of Perceptron

 lllustration Example (Apple Tree)

> [3

yv=ax—+b > | BEUE HIA A e » Y=WX+b
(day > size)
v
=t
G

MEZ S CHA . . .
Ifyv > 30 = sell an apple - > Sl alal AT AN | fo--mmmmmmmmmmmmmmeeee > Activation function
)l_l.ﬂ-_..
(size§9
AL O

Step Function

Bio-inspired Perceptron

% Bio-inspired Learning
» Our brains are made up of a bunch of little units, called neurons, that send
electrical signals to one another
= The rate of firing tells up how “activated” a neuron is
= The incoming neurons are firing at different rates (i.e., have different activations)

» The Goal is that we are going to think of our learning algorithm as a single
neuron.

S4E7|

Bio-inspired Perceptron

% Processing Unit
» Neuron vs. Node

terminal axon

,“/‘/ / N Xy
dendrites‘l"", ‘ = O Yon \.
‘ — Xp— @ y‘
cell body > ‘(k x /'

«» Connection
» Synapse vs. Weight

synapse

input

synapses

output

Structure and Computation

% Terminology for perceptron
» Layer, Node, Weight, Activation function and Learning

A simple example

> summing
junction

8=X7W1+X2W2

-

non-linear
element

fle)

y=f(e)

Structure and Computation

% The neuron receives input from D-many other neurons
» One for each input feature
» The strength of these inputs are the feature values

“ Each incoming connection has a
weight and the neuron simply
sums up all the weighted inputs

» Based on this sum, it decides whether to
“fire” or not

» Firing is interpreted as being a positive
example and not Firing is a negative

example
. . i v g ” Figure 3.2: figure showing feature
= If the weighted sum is positive, it “fires” and vertor fnd wi;‘gm ve dﬂrﬁnd products

otherwise it doesn’t fire and sum

10

Structure and Computation

s Structure of Perceptron
» Input layer: (d+1) nodes (feature vector, x = (Xq, ..., Xg)
» Output layer: 1 node (binary linear classifier)

UA B 82 5

&

o
<>

(a) x| = (b) &3 .E9o| At (c) BA

0

11

Structure and Computation

% The weights (w = (w,, ..., wy)) of these neurons are fairly easy to
Interpret

» Suppose that a feature, for instance “is this a System’s class?” gets a zero
weight

= the activation is the same regardless of the value of this feature So features with
zero weight are ignored

» Feature with positive weights are indicative of positive examples
= Because they cause the activation to increase

» Feature with negative weights are indicative of negative examples
= Because they cause the activation to decrease

12

Structure and Computation

% Computation of Perceptron
» Input layer: Just transfer
» Output layer: summation and activation function

d

y=1s)= T(Z wx; +b) = r(wa +b)
i=1
(+1,520

o] ujj t(g):-:: 6 o
1.8

» Binary Linear Classifier

d(x)=w'x+b>00| xeco, |

dx)=w'x+b<00]¥H xeca, J

13

Structure and Computation

% Example of Perceptron Computation
» OR classification

» d(X) =X, +X,-0.5

a=(0,0), f,=—1 ‘
b=(1.0)%, t=1 ¢ :
e=(0,1), t=1
d=(11), ta=1

(b) OR EF7[=2M HEEE (c) HYEES MY EF77I

14

Learning of Perceptron

% Perceptron Learning
» Training set: X = { (X, t)), X5, 1), ... X) ti=1or-1

» Try to look for w = (w, ..., wy) and b

» Ex) And Problem

a=(0,0)T b=(1,0)T ¢=(0.1)T d=(1.1)T
t=-1 t=-1 t=-1 ¢tzI

> v

t
[
v

15

Learning of Perceptron

% General Designing Steps for Learning in Pattern Recognition

» Step 1: Building up Classification Model
» Step 2: Cost function, J(0)
» Step 3: Finding 0 to optimize J(0)

» This problem is changed into an Optimization Problem !

16

Learning of Perceptron

s Step 1
» Parameter Set: 6 = {w; b}

% Step 2
» Cost Function: Yis a set of error training examples

J(©)= > (-t)w'x; +b)

xs¥

% Step 3
» Gradient Descent Method
» Mov '% direction

» Learning Rate:

17

Learning of Perceptron

% Sketch of algorithm
» Setting up Initial Parameters for 8 = {w; b}

()
o

il +1) = hk)— p(i)

Xp =X
AT(O)
. - {_r...-' ;I
cb t?ze*f J

wih+1)=w(h)+p(h) > x;

xpa¥

blh+1)=b(h)+p(h) > 1 |
Xp =T

=

w(h+1)=w(h)+p(h) > nx;

xz ey

18

Learning of Perceptron

% Perceptron Learning in Batch Mode

!
{: rt H{ﬁﬂii{%’ ykﬁ;‘i' W, b

"\
"y

[—

w@l b Z7|3151ck

Iy

repeat {
Y = O,
for (i=1 to N) {

y = t(w x+b):

- O I

1
)

S. W=WH+p D 1pX,

x,er
- b=b+p 1 :
xtef
10. } umtl (¥ = O):
11. \\'9}- b.;j_. /‘_i ,8‘:‘)-!_‘:}

2]: &8 AT X= {(x1.). (x2. 1),

if #n) Y=Yoxu

s (Xv.)} BRSE p

19

Learning of Perceptron

** Perceptron Learning in Pattern Mode

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)
x Wy <o, forall d=1...D // initialize weights
xb+o // initialize bias
; foriter = 1 ... MaxIter do
for all (x,y) € D do

.
5: a Zg):I wy Xz +b // compute activation for this example
& if ya < o then

7 Wy < wg +yxg, forall d=1...D // update weights
8 b+—b+y /I update bias
¢ end if

« end for

« end for

= return wg, wyq, ..., wp, b

Algorithm 6 PErRcePTRONTEST(W), W1, ..., Wp, b, X)

v @ Z;?:, wg Rz +Db /Il compute activation for the test example
= return sicnN(a)

20

Learning of Perceptron

“ An Example

w(0)=(-0.5,0.75)", b(0)=0.375

(1) d(x)=-0.5x,+0.75x,+0.375

¥={a.b}
(05 [0y (1}] (-01
w(l)=w(0)+0.4(z, -a+1,-b)=| +04—| |+ _1|=!
L 075 o) 1o} 075
b(1) = 5(0) +0.4(¢, +#,)=0.375+0.4*0 = 0.375
C
(2) d(x)= -0.1x,+0.75x,40.375 ?
y={a}
i i i
w(2)=w(1)+04(,a) = | D'l]+n_4[—| Ijﬂ=| D'l] ®
10.75) 0/| L0.75)
B(2) = b(1)+0.4(,) =0.375—-0.4 =—0.025 Sl

@

21

Learning of Perceptron

“ Why this particular update achieves better job
» Some current set of parameters w, b
» An example (x;, t), suppose this is a positive example, sot, =1
» compute an activation a, and make an error (a < 0)

WiXg +Xg2 4

D D
wgxg+b+) xx5+1
d=1 d=1

D

a' =Y wipxs+ b
d=1
D

D
a+ 2x5+1 =: @
d=1

22

Geometric Interpretation

“ What does the decision boundary of a perceptron look like?
» The sign of the activation, a, changes from -1 to +1

» The set of points x achieves zero activation
= The points are not clearly positive nor negative

«» Consider the case where there is no “bias’” term
» The decision boundary B is :

B = {1’ : dexd=0}
d

» If two vectors have a zero dot product, they are perpendicular
» The decision boundary: the plane perpendicular to w

23

Geometric Interpretation

* The scale of the weight vector is irrelevant from the perspective of
classification

» Work with normalized weight vector w, ||w|| =1

- - . wW-x=-—X2=1+2
< The value w- x is just the distance of x 2
from the origin when projected onto o X
the vector w \ *
1 11lll b 1"nﬂ
w= (53 X\ . \?";L'-
. . . A !
< This distance along w is exactly the P e e
activation of that example, with no N\
bias \
~ y \\K
\\

24

Geometric Interpretation

% Therole of the bias term
» Previously, the threshold would be at zero
» The bias simply moves this threshold

» Bias term b is added to get the overall activation
= The projection plus b is then compared against zero

» From a geometric perspective, the role of the bias is to shift the decision
boundary away from the origin, in the direction of w

» It is shifted exactly b units
* b is positive, the boundary is shifted away from w
* b is negative, the boundary is shifted toward w

» A positive bias means that more examples should be classified positive

= By moving the decision boundary in the negative direction, more space vyields a
positive classification

25

Geometric Interpretation

% The perceptron update can also be considered geometrically

* Here, we have a current guess as to the

hyperplane, and positive example comes
in that is currently mis-classified

* The weights are updated : w =w + xt

» The weight vector is changed enough so this
training example is now correctly classified

26

Limitations of Perceptron

“ The limitation is that its decision boundaries can only be linear
» XOR problem

% You might ask is: “Do XOR-like problems exist in the real world?”
» The answer is “YES.”

+ L -

% Two alternative approaches to taking key ideas from the perceptron
and generating classifiers with non linear decision boundaries

» Neural Networks: combine multi-layer perceptrons in a single framework

» Kernels: find computationally efficient ways of doing feature mapping in a
computationally and statistically efficient way

27

Python Code and Practice

* You should install Python 2.7 and Numpy

» Download from: http://Inlpmlir.blogspot.kr/2016/01/perceptron.html

< Homework

28

References

« Sangkeun Jung. “Introduction to Deep Learning.” Natural Language Processing Tutorial,
2015.

 http://ciml.info/

29

http://ciml.info/
http://ciml.info/

Thank you for your attention!
http://web.donga.ac.kr/yjko/

J1ES

