
Ko, Youngjoong

Dept. of Computer Engineering,

Dong-A University

Introduction of Perceptron
in Python

1. Basic Concepts

2. Bio-inspired Perceptron

3. Structure and Computation

4. Learning

5. Geometric Interpretation

6. Limitations of perceptron

7. Python Code and Practice

2

Contents

Basic Concepts of Perceptron

3

 Illustration Example (Apple Tree)

Basic Concepts of Perceptron

4

 Illustration Example (Apple Tree)

Basic Concepts of Perceptron

5

 Illustration Example (Apple Tree)

Basic Concepts of Perceptron

6

 Illustration Example (Apple Tree)

 Bio-inspired Learning

 Our brains are made up of a bunch of little units, called neurons, that send

electrical signals to one another

 The rate of firing tells up how “activated” a neuron is

 The incoming neurons are firing at different rates (i.e., have different activations)

 The Goal is that we are going to think of our learning algorithm as a single

neuron.

7

Bio-inspired Perceptron

 Processing Unit

 Neuron vs. Node

 Connection

 Synapse vs. Weight

8

Bio-inspired Perceptron

 Terminology for perceptron

 Layer, Node, Weight, Activation function and Learning

 A simple example

9

Structure and Computation

10

Structure and Computation

 The neuron receives input from D-many other neurons

 One for each input feature

 The strength of these inputs are the feature values

 Each incoming connection has a

weight and the neuron simply

sums up all the weighted inputs

 Based on this sum, it decides whether to

“fire” or not

 Firing is interpreted as being a positive

example and not Firing is a negative

example

 If the weighted sum is positive, it “fires” and

otherwise it doesn’t fire

 Structure of Perceptron

 Input layer: (d+1) nodes (feature vector, x = (x1, …, xd)

 Output layer: 1 node (binary linear classifier)

11

Structure and Computation

12

Structure and Computation

 The weights (w = (w0, …, wd)) of these neurons are fairly easy to

interpret

 Suppose that a feature, for instance “is this a System’s class?” gets a zero

weight

 the activation is the same regardless of the value of this feature So features with

zero weight are ignored

 Feature with positive weights are indicative of positive examples

 Because they cause the activation to increase

 Feature with negative weights are indicative of negative examples

 Because they cause the activation to decrease

 Computation of Perceptron

 Input layer: Just transfer

 Output layer: summation and activation function

 Binary Linear Classifier

13

Structure and Computation

 Example of Perceptron Computation

 OR classification

 d(x) = x1 + x2 - 0.5

14

Structure and Computation

 Perceptron Learning

 Training set: X = { (x1, t1), (x2, t2), … (xN, tN)}, ti = 1 or -1

 Try to look for w = (w0, …, wd) and b

 Ex) And Problem

15

Learning of Perceptron

16

Learning of Perceptron

17

Learning of Perceptron

18

Learning of Perceptron

 Perceptron Learning in Batch Mode

19

Learning of Perceptron

 Perceptron Learning in Pattern Mode

20

Learning of Perceptron

 An Example

21

Learning of Perceptron

22

Learning of Perceptron

 Why this particular update achieves better job

 Some current set of parameters w, b

 An example (xi, ti), suppose this is a positive example, so ti = 1

 compute an activation a, and make an error (a < 0)

23

Geometric Interpretation

 What does the decision boundary of a perceptron look like?

 The sign of the activation, a, changes from -1 to +1

 The set of points x achieves zero activation

 The points are not clearly positive nor negative

 Consider the case where there is no “bias” term

 The decision boundary B is :

 If two vectors have a zero dot product, they are perpendicular

 The decision boundary: the plane perpendicular to w

24

Geometric Interpretation

x =(2,0)

 The scale of the weight vector is irrelevant from the perspective of

classification

 Work with normalized weight vector w, ||w|| = 1

25

Geometric Interpretation

 The role of the bias term

 Previously, the threshold would be at zero

 The bias simply moves this threshold

 Bias term b is added to get the overall activation

 The projection plus b is then compared against zero

 From a geometric perspective, the role of the bias is to shift the decision

boundary away from the origin, in the direction of w

 It is shifted exactly b units

 b is positive, the boundary is shifted away from w

 b is negative, the boundary is shifted toward w

 A positive bias means that more examples should be classified positive

 By moving the decision boundary in the negative direction, more space yields a

positive classification

26

Geometric Interpretation

 The perceptron update can also be considered geometrically

 Here, we have a current guess as to the

hyperplane, and positive example comes

in that is currently mis-classified

 The weights are updated : w = w + xt

 The weight vector is changed enough so this

training example is now correctly classified

27

Limitations of Perceptron

 The limitation is that its decision boundaries can only be linear

 XOR problem

 You might ask is: “Do XOR-like problems exist in the real world?”

 The answer is “YES.”

 Two alternative approaches to taking key ideas from the perceptron

and generating classifiers with non linear decision boundaries

 Neural Networks: combine multi-layer perceptrons in a single framework

 Kernels: find computationally efficient ways of doing feature mapping in a

computationally and statistically efficient way

28

Python Code and Practice

 You should install Python 2.7 and Numpy

 Download from: http://nlpmlir.blogspot.kr/2016/01/perceptron.html

 Homework

29

• 오일석. 패턴인식. 교보문고.

• Sangkeun Jung. “Introduction to Deep Learning.” Natural Language Processing Tutorial,

2015.

• http://ciml.info/

References

http://ciml.info/
http://ciml.info/

Thank you for your attention!

http://web.donga.ac.kr/yjko/

고 영 중

