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 Illustration Example (Apple Tree) 



 Bio-inspired Learning 

 Our brains are made up of a bunch of little units, called neurons, that send 

electrical signals to one another 

 The rate of firing tells up how “activated” a neuron is 

 The incoming neurons are firing at different rates (i.e., have different activations) 

 

 The Goal is that we are going to think of our learning algorithm as a single 

neuron. 
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Bio-inspired Perceptron 



 Processing Unit 

 Neuron vs. Node 

 

 

 

 

 
 

 Connection 

 Synapse vs. Weight 

 

 

8 

Bio-inspired Perceptron 



 Terminology for perceptron 

 Layer, Node, Weight, Activation function and Learning 

 

 A simple example 
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Structure and Computation 

 The neuron receives input from D-many other neurons 

 One for each input feature 

 The strength of these inputs are the feature values 

 

 Each incoming connection has a 

weight and the neuron simply 

sums up all the weighted inputs 

 Based on this sum, it decides whether to 

“fire” or not 

 Firing is interpreted as being a positive 

example and not Firing is a negative 

example 

 If the weighted sum is positive, it “fires” and 

otherwise it doesn’t fire 



 Structure of Perceptron 

 Input layer: (d+1) nodes (feature vector, x = (x1, …, xd) 

 Output layer: 1 node (binary linear classifier) 
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Structure and Computation 

 The weights  (w = (w0, …, wd)) of these neurons are fairly easy to 

interpret 

 

 Suppose that a feature, for instance “is this a System’s class?” gets a zero 

weight 

 the activation is the same regardless of the value of this feature So features with 

zero weight are ignored 

 

 Feature with positive weights are indicative of positive examples 

 Because they cause the activation to increase 

 

 Feature with negative weights are indicative of negative examples 

 Because they cause the activation to decrease 

 



 Computation of Perceptron 

 Input layer: Just transfer 

 Output layer: summation and activation function 

  

 

 

 

 

 

 Binary Linear Classifier 
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Structure and Computation 



 Example of Perceptron Computation 

 OR classification 

 d(x) = x1 + x2 - 0.5 
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Structure and Computation 



 Perceptron Learning 

 Training set: X = { (x1, t1), (x2, t2), … (xN, tN)}, ti = 1 or -1 

 Try to look for w = (w0, …, wd) and b 

 

 Ex) And Problem 
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Learning of Perceptron 



 Perceptron Learning in Batch Mode 
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Learning of Perceptron 



 Perceptron Learning in Pattern Mode 
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Learning of Perceptron 



 An Example 
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Learning of Perceptron 
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Learning of Perceptron 

 Why this particular update achieves better job 

 Some current set of parameters w, b 

 An example (xi, ti), suppose this is a positive example, so ti = 1 

 compute an activation a, and make an error (a < 0) 
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Geometric Interpretation 

 What does the decision boundary of a perceptron look like? 

 The sign of the activation, a, changes from -1 to +1 

 The set of points x achieves zero activation 

 The points are not clearly positive nor negative 

 

 Consider the case where there is no “bias” term 

 The decision boundary B is : 

 

 

 

 If two vectors have a zero dot product, they are perpendicular 

 The decision boundary: the plane perpendicular to w 
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Geometric Interpretation 

x =(2,0) 

 The scale of the weight vector is irrelevant from the perspective of 

classification 

 Work with normalized weight vector w, ||w|| = 1 
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Geometric Interpretation 

 The role of the bias term 

 Previously, the threshold would be at zero 

 The bias simply moves this threshold 

 Bias term b is added to get the overall activation 

 The projection plus b is then compared against zero 

 

 From a geometric perspective, the role of the bias is to shift the decision 

boundary away from the origin, in the direction of w 

 

 It is shifted exactly b units 

 b is positive, the boundary is shifted away from w 

 b is negative, the boundary is shifted toward w 

 

 A positive bias means that more examples should be classified positive 

 By moving the decision boundary in the negative direction, more space yields a 

positive classification 
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Geometric Interpretation 

 The perceptron update can also be considered geometrically 

 

 Here, we have a current guess as to the 

hyperplane, and positive example comes 

in that is currently mis-classified 

 

 The weights are updated : w = w + xt 

 The weight vector is changed enough so this 

training example is now correctly classified 
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Limitations of Perceptron 

 The limitation is that its decision boundaries can only be linear 

 XOR problem 

 

 You might ask is: “Do XOR-like problems exist in the real world?” 

 The answer is “YES.” 

 

 

 

 

 

 Two alternative approaches to taking key ideas from the perceptron 

and generating classifiers with non linear decision boundaries 

 Neural Networks: combine multi-layer perceptrons in a single framework 

 Kernels: find computationally efficient ways of doing feature mapping in a 

computationally and statistically efficient way 
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Python Code and Practice 

 You should install Python 2.7 and Numpy 

 

 Download from: http://nlpmlir.blogspot.kr/2016/01/perceptron.html 

 

 Homework 
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Thank you for your attention! 

http://web.donga.ac.kr/yjko/ 

고 영 중 


