Introduction of TensorFlow
(Basic Concept)

-

Ko, Youngjoong

Dept. of Computer Engineering,
Dong-A University

1. Start Up

2. Overview of TensorFlow
3. Two Computation Phrases
4. Tensors

5. Variables

6. Operations

7. References

Google Machine Learning Tools

Start Up

15t Generation : DistBelief

- Deanetal. 2011

2nd Generation :

- Major Output Products

- Inception (Image Categorization)
- Google Search

- Google Translate

- Google Photos

- Dean et al. 2015 (November, 1*)
- Most of DistBelief users at Google have

already switched to TensorFlow

Start Up

\/

% Main Developers of DistBelief and TensorFlow

Jeffrey Adgate "Jeff" Dean (born 1968) is an
American computer scientist and software engineer. He
is currently a Google Senior Fellow in the Systems and
Infrastructure Group.

* Advertising / Crawling / Indexing / Query Systems

*BigTable a large-scale semi-structured storage system.
*MapReduce a system for large-scale data processing applications.

*Google Brain a system for large-scale artificial neural networks
*LevelDB an open source on-disk key-value store.
*TensorFlow an open source machine learning software library.

L]
e

L)

Features

Start Up

Programming Model

Dataflow-like model

A directed Computational Graph & S8} 2 =
Ag B

Language

Python
C++

&4 T = Python, C++ BF X| & £|L} FrontEnd ¢1
Ol & Z AL BHSH &= HEl

Deployment

Code once, Run

StLte| AEE FoisHH, ThE2| 7] Ao M
xES

everywhere Lol X
. CPU CPU 2t GPU & SA|0f &87ts¢h HE2| A
Computing Resource GPU Al Infra

Distribution Process

Local Implementation
Distributed
Implementation

Local, Distribution 27}X| 2 E0f CH3H ++31 £
o S =48 B Z=H TensorFlow 7} &0t

M EESE
. 2= Al Ol H AL EEAIS oraph S{E| 2 B 3. 2}
) Math Graph Expression |-l & 0t e de= S0 2 == =5
Math Expressions i M X+E&2 2 0| F7ts. £9] Gradient 7| £t0f|
Auto Differentiation x| M SHaH A 70 et
EESEe10e PSR 1

Optimization

Auto Elimination
Kernel Optimization
Communication
Optimization
Support model, data
parallelism

Start Up

% Computational Graph

import tensorflow as tf

b = tf.vVariable(tf.zeros([100])) # 100-d vector, init to zeroces

W = tf.Variable (tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

x = tf.placeholder (name="x") # Placeholder for input

relu = tf.nn.relu(tf.matmul (W, x) + b) # Relu (Wx+b)

C=1...] # Cost computed as a function
of Relu

RelU

YT C = ReLU(W - x + b)

LITe

MatMul

®

@

Start Up

% Let's peek at what TensorFlow code looks like
» The first part of this code builds the data flow graph.

import tensorflow as tf
import numpy as np

Create 100 phony x, y data points in NumPy, vy = x * 0.1 + 0.3
x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3

Try to find values for W and b that compute y_data = W » x_data + b
(We know that W should be ©.1 and b 9.3, but Tensorflow will

figure that out for us.)

W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
tf.variable(tf.zeros([1]))

W * x_data + b

= T
I n

Minimize the mean squared errors.

loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

Start Up

% Let's peek at what TensorFlow code looks like

» TensorFlow does not actually run any computation until the session is
created and the run function is called.

Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()

Launch the graph.
sess = tf.Session()]
sess.run{init)

Fit the line.
for step in xrange(201):
| sess.run(train)|
if step % 20 ==
print step,|sess.run(W), sess.run(b)|

Learns best fit is W: [0.1], b: [0.3]

% Download and set up Tensorflow
> https://www.tensorflow.org/versions/0.6.0/get started/os setup.html

https://www.tensorflow.org/versions/0.6.0/get_started/os_setup.html

Overview of TensorFlow

% To use TensorFlow, you need to understand how TensorFlow:
» Represents computations as graphs.

Executes graphs in the context of Sessions.

Represents data as tensors.

Maintains state with Variables.

Uses feeds and fetches to get data into and out of arbitrary operations.

s» Overview of TensorFlow

» A programming system in which you represent computations as graphs

» Nodes in the graph
= QOperation (op): to perform some computations
= |nput: one or more tensor, Output: one or more tensor

= Tensor: a typed multi-dimensional array
v' EX) a mini-batch of images as a 4-D array of floating,
[batch, height, width, channels]

Two Computation Phrases

% To compute anything in TensorFlow
» A graph must be launched in a Session.

» A Session

= Place the graph ops onto Devices, such as CPUs or GPUs
= Provide methods to execute them

= Return tensors produced by ops as numpy ndarray objects in Python, and
as tensorflow::Tensor instances in C and C++,

* Two Computation Phrases of a Graph

» Construction phrase
= Assemble a graph

= eXx) create a graph to represent and train a neural network

» Execution phrase
= Use a session to execute ops in the graph

= eX) repeatedly execute a set of training ops in the graph

10

Two Computation Phrases

* Building the Graph
» Start with ops that do not need any input (source ops), Constant
» Pass their output to other ops that do computation

» Ops constructors return objects
= Stand for the output of the constructed ops
= Pass these to other ops constructors to use as inputs

* Default Graph
» Ops constructors add node to that graph

import tensorflow as tf

Create a Constant op that produces a 1x2 matrix. The op is
added as a node to the default graph.

The value returned by the constructor represents the output
of the Constant op.
matrixl = tf.constant([[3., 3.]1]1)

#
=
#
#
#

Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]1])

11

Two Computation Phrases

* Default Graph
» Has three nodes: two constant() ops and one matmul() op

Create a Matmul op that takes 'matrixl' and 'matrix2' as inputs.

The returned value, 'product', represents the result of the matrix
multiplication.

product = tf.matmul(matrixl, matrix2)

% Launching the graph in a session
» Create a Session Object: should be closed to release resources
» Without arguments, session constructor launches the default graph

Launch the default graph.
sess = tf.Session()

To run the matmul op we call the session 'run()' method, passing 'product'
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.

The output of the op is returned in 'result' as a numpy "ndarray’ object.
result = sess.run(product)

print result

==> [[12.]]

Close the Session when we're done.
sess.close()

12

Two Computation Phrases

% Session launches the graph, Session.run() method executes
operations

* A Session with Block
» Close automatically at the end of the with block

with tf.Session() as sess:
result = sess.run([product])
print result

% GPU Usage

» Translate the graph definition into executable operations distributed
across available compute resources, such as CPU or GPU

» If you have GPU, TensorFlow uses your first GPU

13

Two Computation Phrases

*» Interactive Usage

» In Python environments, such as Ipython, the InteractiveSession class
IS used.

» Tensor.eval() and Operation.run()
» This avoids having to keep a variable holding the session

Enter an interactive TensorFlow Session.
import tensorflow as tf
sess = tf.InteractiveSession()

X
a

tf.variable([1.0, 2.0])
tf.constant([3.0, 3.0])

Initialize 'x' using the run() method of its initializer op.
x.initializer.run()

Add an op to subtract 'a' from 'x'. Run it and print the result
sub = tf.sub(x, a)

print sub.eval()

==> [-2. -1.]

Close the Session when we're done.
sess.close()

14

Tensors

% Tensors
» Tensor data structure to represent all data
» Only tensors are passed between operations in the computation graph

» n-dimensional array or list
= Static type, a rank, and a shape

Rank Math entity Python example

0 Scalar (magnitude only) S 483

Vector (magnitude and
direction)

[y 2:% 3.8

Matrix (table of

2 | S m= [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
5 3-Tensor (cube of t = [[[2], [4], [e]l], [[8], [10], [12]],
numbers) [[14], [16], [18]]]

n-Tensor (you get the

n S
idea)

15

Tensors

s Tensors

» Shape
Rank Shape Dimension number Example
o 0 0-D A 0-D tensor. A scalar.
1 [DO] 1-D A 1-D tensor with shape [5].
2 [Do,D1] 2-D A 2-D tensor with shape [3, 4].
3 [Do,D1,D2] 3-D A 3-D tensor with shape [1, 4, 3].
n [DO,D1,..Dn] n-D A tensor with shape [DO, D1, ... Dn).
» Data Types
Data type Python type Description
DT_FLOAT tf.float32 32 bits floating point.
DT_DOUBLE tf.float64 64 bits floating point.
DT_INTe4 tf.inte4 64 bits signed integer.
DT_INT32 tf.int32 32 bits signed integer.
DT_INT16 tf.intlé6 16 bits signed integer.

16

s Tensors
» Data Types

DT_INT8

DT_UINTS
DT_STRING
DT_BOOL
DT_COMPLEX64

DT_QINT32
DT_QINT&

DT_QUINTS8

tf.

e 2

tfs

i 2

7

b e

tf

tf

int8

uints8

string

bool

complex64

qint32

.qints8

.quints

Tensors

8 bits signed integer.
8 bits unsigned integer.

Variable length byte arrays. Each element of a Tensor is
a byte array.

Boolean.

Complex number made of two 32 bits floating points:
real and imaginary parts.

32 bits signed integer used in quantized Ops.
8 bits signed integer used in quantized Ops.

8 bits unsigned integer used in quantized Ops.

17

Variables

% Variables: Creation, Initialization, Saving and Loading

» To hold and update parameters, maintain state in the graph across calls to
run()

» In-memory buffers containing tensors
» Must be explicitly initialized and can be saved to disk during and after training

» Class tf.Variable

= Constructor: an initial value for the variable, a Tensor of any type and shape
= After construction, the type and shape are fixed
= assign Op with validate shape=False

18

Variables

% Creation
» Pass a Tensor as its initial value to the Variable() constructor

» Initial value: constants, sequences and random values
= tf.zeros(), tf.linspace(), tf.random_normail()

» Fixed shape: the same shape as ops’ shape

Create two variables.

weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name="weights")

biases = tf.Variable(tf.zeros([200]), name="biases")

» Calling tf.Variable() adds several ops to the graph

Create two variables.

. TUNT . :) _ _
°oe |n|t|a||zat|0n weights tf.Vamab‘Le(tf.rfndorti_normal([784, 200], stddev=0.35),
name="weights")
i biases = tf.Variable(tf.zeros([200]), name="biases"
» Add an op and run it (([200]))

TN T . # Add an op to initialize the variables.
> tf.|nltlalIZe_aII_VarIabIeS() ['im't_op = tf.1'm'ﬁalize_all_variables()]

Later, when launching the model
with tf.Session() as sess:
Run the init operation.
[sess.run(init_op)]

19

Variables

/

% Saving and Restoring
» tf.train.saver

» Checkpoint Files: Variables are saved in binary files that contain a map from
variable names to tensor values
Create some variables.

vl = tf.Variable(..., name="v1")
v2 tf.Variable(..., name="v2")

Add an op to initialize the variables.
init_op = tf.initialize_all_variables()

Add ops to save and restore all the variables.
saver = tf.train.Saver()

Later, launch the model, initialize the variables, do some work, save the
variables to disk.
with tf.Session() as sess:

sess.run(init_op)

Do some work with the model.

Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)

20

Variables

/

% Saving and Restoring
» Restore

Create some variables.
vl tf.variable(..., name="v1")
v2 tf.Variable(..., name="v2")

Add ops to save and restore all the variables.
[saver = tf.train.Saver()]

Later, launch the model, use the saver to restore variables from disk, and
do some work with the model.
with tf.Session() as sess:

Restore variables from disk.

[saver.restore(sess, "/tmp/model.ckpt")]

print("Model restored.")
Do some work with the model

21

Variables

/

% Choosing which Variables to Save and Restore

» No arguments to tf.train.Saver() = handle all variables in the graph
= Each one of them is saved under the name

» Save and restore a subset of the variables

= EX) trained neural net with 5 layers =» want to train a new model with 6 layers,
restoring the parameters from the 5 layers

» Passing to the tf.train.Saver() constructor a Python dictionary: keys

Create some variables.
vl tf.vVariable(..., name="v1")
v2 tf.variable(..., name="v2")

Add ops to save and restore only 'v2' using the name "my_v2"
[saver = tf.train.Saver({"my_v2": v2})
Use The saver object normally after that.

22

Variables

+ Example code serving a simple counter

Create a Variable, that will be initialized to the scalar value 0.
state = tf.Variable(@, name="counter")

Create an Op to add one to "state’.

one = tf.constant(l)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

Variables must be initialized by running an “init’ Op after having
launched the graph. We first have to add the "init’ Op to the graph.
init_op = tf.initialize_all_variables()

Launch the graph and run the ops.
with tf.Session() as sess:
Run the 'init' op
sess.run(init_op)
Print the initial value of 'state'
print(sess.run(state))
Run the op that updates 'state' and print 'state'.
for _ in range(3):
sess.run(update)
print(sess.run(state))

W

output:

R L L
W N O

23

Variables

%+ Fetches

» Execute the graph with a run() call on the Session object and pass in the tensors to
retrieve

inputl = tf.constant(3.0)

input2 = tf.constant(2.0)

input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(inputl, intermed)

wi
result = sess.run([mul, intermed])
print(result)

output:
[array([21.], dtype=float32), array([7.], dtype=float32)]

24

Variables

% Feeds
» Patching a tensor directly into any operation in the graph
» Temporarily replaces the output of an operation with a tensor value
» Feed data as an argument to a run() call
» Only used for the run call to which it is passed
» tf.placeholder()

inputl = tf.placeholder{(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(inputl, input2)

with tf.Session() as sess:
print(sess.run([output], feed_dict={inputl:[7.], input2::2.]}))]

output:
[array([14.], dtype=float32)]

25

Operations

% Operations

Category Examples

Element-wise mathematical operations | Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...

Stateful operations Variable, Assign, AssignAdd, ...

Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPooal, ...
Checkpointing operations Save, Restore

Queue and synchronization operations | Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, Nextlteration

26

References

« Martin Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distibuted Systems.” White Paper Version.

« Sangkeun Jung. “Deep Learning Tutorial with Tensorflow.” Natural Language Processing
Tutorial, 2016.

« www.tensorflow.org

 hittp://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix

27

http://www.tensorflow.org/
http://www.tensorflow.org/
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix
http://www.slideshare.net/mikeranderson/2013-1114-enter-thematrix

Thank you for your attention!
http://web.donga.ac.kr/yjko/

J1ES

